Beneath Apple ProDOS

Beneath Apple ProDOS

FOR USERS OF APPLE Il PLUS, APPLE lle AND APPLE llc COMPUTERS

QUALITY
By Don Worth and Pieter Lechner SOFTWARE

@ @ W w w @ W w

&) &

=

-

i

oI Fet R e

Loz

(z

I

izl

IS AN

Beneath Apple ProDOS

Second Printing, March 1985

by Don D. Worth and Pieter M. Lechner

QUALITY
SOFTWARE

21601 Marilla Street
Chatsworth, California 91311

Apple Books from Quality Software

Beneath Apple DOS $19.95
by Don Worth & Pieter Lechner

Understanding the Apple IT $22.95
by Jim Sather

Understanding the Apple Ile $24.95
by Jim Sather

Apple Utility Software from Quality Software

Bag of Tricks (includes diskette) $39.95
by Don Worth & Pieter Lechner

Universal File Conversion (includes diskette) $34.95
by Gary Charpentier

For your convenience,
an order form is provided on the last page of this book.

Production Editor: Kathryn M. Schmidt
Original Diagrams: Don Worth & Pieter Lechner
Art Director: Vie Grenrock

Tllustrations By: George Garcia

Compositor: American Typesetting, Inc.

Printed By: California Offset Printers

© 1984 Quality Software. All rights reserved. No part of this book may be reprinted,
or reproduced, or utilized in any form or by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying and recording, or
in any information storage and retrieval system, without permission in writing from
the Publisher. No patent liability is assumed with respect to the use of the informa-
tion contained herein. While every precaution has been taken in the preparation of
this book, the publisher assumes no responsibility for errors or omissions. Neither is
any liability assumed for damages resulting from the use of the information con-
tained herein.

The word Apple and the Apple logo are registered trademarks of Apple Computer,
Ine.

Apple Computer, Inc. was not in any way involved in the writing or other prepara-
tion of Beneath Apple ProDOS, nor were the facts presented here reviewed for
accuracy by that company. Use of the term Apple should not be construed to repre-
sent any endorsement, official or otherwise, by Apple Computer, Inc.

ISBN 0-912985-05-4
Library of Congress Number: 84-61383

86 85 5432
Printed in the United States of America

_ T T T T S e e e i ——u

TTTTTPTPTHTTITDTTIT T MIOMIMMMOMTTTOHTTOTOHDODOHDND MR

|

W & W E W w W W W G

b e &

=y

rl,

=

This book is dedicated to my sister, Betsy, who said she
had room on her bookshelf for another one of my books.

Don D. Worth

This book is dedicated to my Father and Mother, with a
deep sense of appreciation and gratitude.

Pieter M. Lechner

o

Chapler 4

Chapter2

Chapter3

Chapter4

Chapter5

Chapter 6

Chapter7

J

CONTENTS

INTRODUCTION

TO BUILD A BETTER DOS

THE DEFICIENCIESOFDOS 21

ENTER ProDOS 2-3

MORE ProDOS ADVANTAGES 2-5

WHAT YOU GIVE UPWITH ProDOS 2-7

OTHER DIFFERENCES BETWEEN ProDOS ANDDOS 29

DISK Il HARDWARE AND DISKETTE FORMAITING

TRACKS AND SECTORS 3-2
TRACKFORMATTING 3-5
DISK Il BLOCK AND SECTOR INTERLEAVING 3-15

VOLUMES, DIRECTORIES, AND FILES

THE DISKETTE VOLUME 4-1

THE VOLUME DIRECTORY 4-6

FILE STRUCTURES 4-13

FILE DATATYPES 4-19

DIR FILES—ProDOS SUBDIRECTORIES 4-26
EMERGENCY REPAIRS 4-30
FRAGMENTATION 4-33

THE STRUCTURE OF ProDOS

ProDOS MEMORY USE 5-1
GLOBALPAGES 5-5
WHAT HAPPENS DURING BOOTING 5-8

USING ProDOS FROM ASSEMBLY LANGUAGE

CAVEAT 6-1

DIRECT USE OF THE DISKETTE DRIVE 6-2

CALLING THE DISK 1| DEVICE DRIVER (BLOCK ACCESS) 66
CALLING THE MACHINE LANGUAGE INTERFACE ~ 6-12

MLI PARAMETER LISTS BY FUNCTION CODE 6-15

PASSING COMMAND LINES TO THE BASIC INTERPRETER ~ 6-61
COMMON ALGORITHMS 6-63

CUSTOMIZING ProDOS
SYSTEM PROGRAMMING WITH ProDOS 7-1
INSTALLING A PROGRAM BETWEEN THE BI AND ITS BUFFERS 7-4
ADDING YOUR OWN COMMANDS TO THE ProDOS
BASIC INTERPRETER 7-5

B 3
el s
Eii
Eii
eia
EIS
B A
E'!E
&
s
B
E!TB
o
&[J
B
B
=
&
T
B G
B
(I

Chapter 8

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Glossary

Index

Reference Card

CONIENTS

DISABLE /RAM VOLUME FOR 128K MACHINES 7-7

WRITING YOUR OWN INTERPRETER 7-11

INSTALLING NEW PERIPHERAL DRVES 7-13

INSTALLING AN INTERRUPTHANDLER 7-15

DIRECT MODIFICATION OF ProDOS—AWORD OF WARNING 7-18

ProDOS GLOBAL PAGES

BASIC INTERPRETER GLOBAL PAGE 8-2
ProDOS SYSTEM GLOBAL PAGE 8-5
ORDERING THE SUPPLEMENT TO Beneath Apple ProDOS 8-8

EXAMPLE PROGRAMS

STORING THE PROGRAMS ON DISKETTE A-3
DUMP—Track Dump Utility A-4
FORMAT—Reformat a Range of Tracks A-9
ZAP—Disk Update Utility A-19

MAP—Map Freespace onaVolume A-22
FIB—Find Index Block Utility A-25
TYPE—Type Command A-30
DUMBTERM—Dumb Terminall Program A-36

DISKETTE PROTECTION SCHEMES

A BRIEF HISTORY OF APPLE SOFTWARE PROTECTION B-2
PROTECTION METHODS B-3
THE IDEAL PROTECTION SCHEME B-7

NIBBLIZING

ENCODING TECHNIQUES C-1
THE ENCODING PROCESS C-5

THE LOGIC STATE SEQUENCER
ProDOS, DOS, AND SOS

CONVERTING FROM DOS TO ProDOS E-1
WRITING PROGRAMS FOR ProDOS AND SOS E-3

m N mw
w w Wl

CHAPTER 1
E =
- INTRODUCTION
T 3
Acknowledgements o™
. . : o ™
The authors wish to thank Quality Software for their able assmtapce in [
producing this book. Special thanks to Bob Christiansen, pr P_1erce, = ! m
Ka‘th Schmidt, Geor:ge Garqla, ch Grenrock, and Jeff Weinstein for 3 Beneath Apple ProDOS is intended to serve as a companion to
their unique and special contributions. &= = themanuals provided by Apple Computer, Inc. for ProDOS,
providing additional information for the advanced programmer or
B '8 forthe novice Apple user who wants to know more about the
| structure of disks. It is not the intent of this manual to replace the
= i1 documentation provided by Apple. Although, for the sake of
continuity, some of the material covered in the Apple manuals is
o also covered here, it will be assumed that the reader is reasonably
L familiar with the contents of Apple’s ProDOS User’s Manual and
= BASIC Programming With ProDOS. Since all chapters presented
‘ here may not be of use to each Apple owner, each has been written
o
_JIE
Y
I
T
mo
.
N
s

[
J

)
u

12 Beneath Apple ProDOS

to stand on its own. Readers of our earlier book, Beneath Apple
DOS, will notice that we have retained the basic organization of
that book in an attempt to help them familiarize themselves with
Beneath Apple ProDOS more quickly.

The information presented here is a result of intensive
disassembly and annotation of various versions of ProDOS by the
authors. It also uses as a reference various application notes and
preliminary documentation from Apple. Although no guarantee
can be made concerning the accuracy of the information presented
here, all of thc .naterial included in Beneath Apple ProDOS has
been thoroughly researched and tested.

There were several reasons for writing Beneath Apple ProDOS:

® To show how to access ProDOS and/or the Disk II drive
directly from machine language.

® To help you fix damaged disks.

® To correct errors and omissions in the Apple documentation.

® To allow you to customize ProDOS to fit your needs.

® To provide complete information on diskette formatting.

® To document the internal logic of ProDOS.

® To present a critical, non-Apple perspective of ProDOS.

® To provide more examples of ProDOS programming.

® To help you to learn about how an operating system works.

When Apple introduced ProDOS Version 1.0.1 in January 1984,
three manuals were available: the ProDOS User’s Manual
documents the use of ProDOS utilities; the BASIC Programming
With ProDOS manual describes the command language supported
by the BASIC Interpreter and how to write BASIC programs
which access the disk; and the ProDOS Technical Reference
Manual (for the Apple II family) documents the assembly language
interfaces to ProDOS. It should be stated that this technical
reforcs oo omi-nmal represents the best internal documentation
Appie iius ¢ er provided to users of one of their operating systems.
Unfortunately, the ProDOS Technical Reference Manual
documents a prerelease version of ProDOS, and is not entirely
accurate for the current release at the time of this writing. In
addition, many sections require further explanation before the
interfaces they describe can be used at all. For example, the
discussion of how one adds a command to the BASIC Interpreter
omits several vital pieces of information which are documented
fully in Beneath Apple ProDOS. In addition, none of the Apple

& W W @ w W W W w

% Gl =) i

3 -

|

mE MMM MMM MWW E TN

1)

Introduction 1-3

?}?ecllx)rpflz{nlt?’;ion ?Imdd¥esses diskette formatting or direct access of
Is amily of controllers from assembly | ,
Apple ProDOS was written in imbrove aeon a1
(an attempt to improve
documentation ba’tse established by Apple. Mostpof theuti))(;))?ctshe
:}?Z;ier(i by Alpple 5‘, ﬁechnical manual are covered here also, but
explained in a different and, we ho ,
, , pe, clearer way, b
Iu{pon a programmer s understanding of the code in the Prg’DSSs»ed
eg'nel apd Fhe BASI'C Interpreter. We have also added
substantial }nformatlon on diskette formatting and repair, the
;Ztirr}al logic and structure of ProDOS. and customizing ’
chniques, as well as providin |
quick reference materials. ¥ several example programs and
o {-E:gdltlon .to the ProDOS specific information provided many
o I1Iszc{u(sis;§ns Iaxli(; Iafpply to other operating systems in tile
‘lI'and Apple amily of machines. F i
formatting at the track and S for the manpie: disk
sector level is for the most
same. Also, the format of a ProDOS i et
, vol i i
th%t of an Apple I1I1 SOS volume. Pume s nearly identical to
o ‘?;r;hg?f Or'fead(;am' vsic}}llo would like to have a detailed description
. code 1n the current version of ProDOS
to this book is available and ¢ ire o et
an be ordered direct i
Software. Please see Chapter 8 for details. ety from Quality

@ W W W W w w W

([N FEVR =V I V=T =T I)

|-

=

CHAPTER 2

TO BUILD A BETTER DOS

From June 1978 to January 1984, the primary disk operating
system for the Apple II family was Apple DOS. Throughout
its first six years of existence, DOS has gone through a number of
changes, culminating in its final version, DOS 3.3. DOS was
originally designed primarily to support the BASIC programmer,
but has since been adopted by assembly language programmers
and by the majority of Apple users for a variety of applications.

THE DEFICIENCIES OF DOS

Although it is a flexible and easy to use operating system, DOS
suffers from many weaknesses. Among these are:

® DOSisslow. Since each byte read from the disk is copied
between memory buffers up to three times, a large portion of
the actual overhead in reading data from the disk is in
processor manipulation after the data has been read. To
circumvent this, several “fast DOS” packages have been
marketed by third parties which heavily modify DOS to
prevent multiple buffering under certain circumstances.

® DOSisdevice dependent. When DOS was developed, the only

mass storage device for the Apple was the Disk IT diskette
drive. Now that diskette drives with increased capacity and
hard disks are available, a more device independent file
organization is needed. DOS is limited in the number of files
which can be stored on a diskette as well as their maximum
size. These are significant drawbacks when a hard disk with
five million bytes or more is used.

2-2 Beneath Apple ProDOS

® Over the years, new hardware has been introduced by Apple
and other manufacturers which DOS does not intrinsically
support. The Apple ITe with its 80-column card and the
Thunderelock are examples.

® DOSisdifficult to customize. There are few external “hooks”
provided to allow system programmers the opportunity to
personalize the operating system to special applications. For
example, a new command cannot be added to DOS without

version dependent patches.

® DOS file structures and system calls are incompatible with
other operating systems. Each operating system Apple has
announced in the past has had its own way of organizing data
on a diskette. There is no compatibility between DOS, SOS and
the Apple Pascal system. This means that special utilities must
be written to move data between these systems and that
applications developed in one environment will not run
without major modifications under any other system.

® DOS does not provide a consistent mechanism for supporting
multiple peripherals which can generate hardware interrupts.
In the past, various manufacturers have implemented
interrupt handlers on their own, often resulting in
incompatibilities between their devices.

® DOS provides little standardization of memory use and of
operating system interfaces. Most “interesting” locations
within DOS are internalized and therefore not officially
available to the programmer. Also, since there is no standard
way to set aside portions of memory for specific applications, it
is difficult to put a program in a “safe” place so that it may co-
reside with another application.

® Although DOS allows most of its commands to be executed
from within a BASIC program, additional function is needed.
Under DOS, there is no way to conveniently read a file
directory from a BASIC program, or to save and restore
Applesoft’s variables, for example. Likewise, the
implementation of program CHAINing is not integrated into
DOS.

N

momomow
w

=l la) L

m M m

mEmrTmwmr

m T

l I i W W W

Tl

L VO

[

To Build a BetterDOS 2-3

NE% RoDELS
7> 7
M i

AN

® Additional functions under DOS which would also be desirable
(toname qnly a few) are: a display of the amount of freespace
left on a diskette; a way to show the address and length
parameters stored with a binary file; and a way to create
unbootable data disks to increase storage space for user files.

ENTER ProDOS

Ir} January 1984, Apple introduced a new disk o i
for its Apple II family of computers. ProDOS is ini)eerfgéiintg(r)srfptgrcle
DQS 3.3‘as the standard Apple II operating system, and it is now
being shipped with all new Disk II drives instead of DOS.
Although., on the surface, ProDOS is very similar in appearance to
DOS 3.3, it represents a major redesign and is a new and separate

system. From the beginning, ProDOS addresses all of DOS’s
weaknesses mentioned above:

[) Prol?‘O‘S is up to eight times faster than DOS in disk access. A
new .dlrect read” mode has been implemented which allows:
multisector reads to be performed directly from the disk to the
programmer’s buffer without multiple buffering within
ProDOS itself. When performing direct reads, ProDOS can
transfer data from the diskette at a rate of ej ght kilobytes per
second (at best, DOS can read one kilobyte per second). Even
when reading small amounts of data from the disk, ProDOS
does less multiple buffering than does DOS. ’

2-4 Beneath Apple ProDOS

ProDOS provides a device independent interface to “foreign”
mass storage devices. The concept of a hierarchically
organized disk “volume” was created to allow for large-
capacity devices, and vectors are provided to allow device
drivers for non-standard disks to be integrated into ProDOS.
Directories may be dynamically expanded to unlimited size to
allow for large numbers of files, and an individual file may
now occupy up to 16 million bytes of spaceon a _Vo_lume. The
largest volume which can be supported is 32 million bytes.

Device driver support has also been provided for .
calendar/clock peripherals, allowing time and date stamping
of files, and support for the Apple Ile and IIc 80-column
hardware is a part of ProDOS.

Learning from its mistakes with DOS, Apple has exterqalized
as many ProDOS functions as possible through well defined
system calls. In addition to standard file managg'ment system
calls, interfaces are provided to support user written
commands to the BASIC Interpreter, and to invoke a ProDOS
command from within an assembly language program.

The ProDOS file and volume structure is nearly identical to
that of the Apple ITII SOS operating system. There are even
strong similarities between ProDOS system calls and those on
Apple’s Macintosh! A ProDOS volume may be; gccessed from
SOS directly without the need for a special utility program.
ProDOS system calls dre a large subset of those offered }Jnder
SOS, and applications may be developed which will easily port
between the two operating systems.

ProDOS defines a protocol which interrupting devices may use
to coexist harmoniously in the same machine. Up to four .
interrupt drivers may be installed in ProDOS, and each device
need not know that the others exist.

Most system locations of general interest have been placed in
externally accessible areas of memory called global pages.
Through a global page, a user written program can obtain the
current ProDOS version number, the most recent values
entered on a ProDOS command line, or the configuration'of the
current hardware including the machine type, memory size,
and contents of the peripheral card slots. In addition, a

-

=
i W i W W @

meaMmmmw m

m M M m m
& @ L ld

m
e e W

VRS V%Y

To Build a BetterDOS 2-5

voluntary system has been provided to “fence off” portions of
memory for special uses by marking a memory bit map in the
system global page.

New support has been provided under ProDOS for BASIC
programmers. A BASIC program can now read a directory
file, make a “snapshot” of its variables on disk and later restore
them, and chain between programs, preserving the variables.

The CATALOG command under ProDOS displays the address
and length values of binary files as well as the space
remaining on a disk volume.

MORE ProDOS ADVANTAGES

In addition to addressing needs which grew out of DOS, Apple

has also come up with other enhancements with ProDOS:

A new “smart” RUN command (“-”) has been added which will
automatically perform the function of a RUN, EXEC or

BRUN as appropriate depending upon the type of file being
RUN.

The assembly language interface has been expanded to include
obtaining and updating statistical information about a file,
moving the end of file mark in a file, allowing line-at-a-time
reads versus byte stream reads, determining the names of
diskettes mounted in online drives, and creating new files or
directories. In addition, entry points are included to allow
applications to pass control from program to program and to
allocate memory.

The language independent, file management portion of
ProDOS (the Kernel), is a separate unit from the BASIC
support routines. Applications may be written which reclaim
the memory normally occupied by BASIC support routines.

All ProDOS utilities are menu oriented with enhanced user
interfaces.

Owners of the Extended 80-column card in an Apple ITe have
access to a 64K “RAM/electronic disk drive” under ProDOS.
Data stored there may be accessed almost instantaneously
allb>wing much more efficient loading and storing of programs
and data.

2-6 Beneath Apple ProDOS

SWO
R R ARKULA
NICE
JOBS! 0

1S
A .
(1

“#)

® Applesoft string “garbage collection” has been rewritten
under ProDOS, and is now many times faster and more

efficient.

® TFiles may be restricted or “locked” by type of access. Read only
files may be established, or files which may be written but not

destroyed, for example.

® The binary save (BSAVE) command has been enhanced under
ProDOS. BSAVESs into existing binary files whose A and/or L
keywords are omitted will use the current values of the target
file. Also, other file types besides BIN files may be BLOADed
and BSAVEJ, allowing direct modification ata byte-by-b.yte‘
level. (For example, one can BLOAD a text file and examine 1t
in memory, making modifications to the hex image.)

® The record length of a random access text file is now stored
with the file, allowing subsequent BASIC programs to access
it without knowing its record length.

® Data disk volumes may now be created which do not con_ta.in an
image of the operating system. ProDOS makes more efflcu?nt
use of the disk, resulting in slightly more user storage for files.

W W i W @

el & W&

RN

le

le

! & L&

™

To Build a Better DOS 2-7

® More information about a file is stored in the directory entry
under ProDOS than under DOS. The length of a binary or
Applesoft file, for example, is stored in the directory, not in the
file itself.

® The manner in which the ProDOS BASIC Interpreter
intercepts a BASIC program’s command lines has been
improved and is more reliable. It is now very difficult to
“disconnect” ProDOS as could occur under DOS.

® More file types (256) are available under ProDOS. Some are
“user definable.”

WHAT YOU GIVE UP WITH ProDOS

ProDOS is not for everyone, however. There are a number of
disadvantages to moving from DOS to ProDOS:

® Most assembly language programs which ran under DOS will
have to be rewritten for ProDOS. The file management
interfaces are completely different, and the “PRINT
control-D” mechanism which worked from assembly language
under DOS no longer works under ProDOS. This means that
most commercial applications, such as word processors,
compilers, and spreadsheets, will not be available for ProDOS
until they are converted. This state of affairs will change,
however, since ProDOS is now the “official” operating system

for Apple Il computers.

® Apple’s older version of BASIC, Integer BASIC, is not
supported under ProDOS. Indeed, Applesoft must be in the
motherboard ROMs for the ProDOS BASIC Interpreter to
work at all. This means that only the ProDOS Kernel, used in a
standalone, run-time environment, will run on an original,
Integer Apple II. It is likely that someone (probably not Apple)
will soon market an Integer BASIC interpreter for ProDOS,
however.

® ProDOS requires 64K to support BASIC programming and
commands. It can be made to run in 48K for run-time assembly
language applications, but 64K is required to run the BASIC
Interpreter which incorporates all of the ProDOS commands
(e.g. CATALOG, BLOAD, etc.).

il

2-8 Beneath Apple ProDOS To Build a BetterDOS 29

A

by exgmining its data blocks. Also, since seedling files do not
have index 'blocks (similar to DOS Track/Sector Lists), they
are almost impossible to find once their directory entries are
gone.

® Under BASIC, less memory is available to the program.
Under DOS, HIMEM was set at $9600 with three file buffers
built into DOS. Under ProDOS, HIMEM is at $9600 with no
file buffers built in. Thus, as soon as a ProDOS BASIC
program opens a file, HIMEM is moved down and 1K less
memory is available. Likewise, since the Kernel occupies the
Language Card (or bank switched memory), this space may
not be used for other purposes. (DOS could be relocated into
the language card to make more space available to BASIC
programs. Also, Applesoft enhancement aid programs

OTHER DIFFERENCES BETWEEN ProDOS AND DOS

There are a few other minor differences between ProDOS and
DOS which are worth noting:

® The BRUN command now calls the target program rather

i

m M M M M M W
(il i W W

typically were loaded into the language card’s alternate 4K than jumping to it as did DOS. The invoked program may
bank under DOS. This is where ProDOS stores its Quit code T return to ProDOS via a return subroutine.
now.) . 3 ® CLOSE will not produce an error message if the file named is
® ProDOS only maintains a single directory prefix for all - not cur rent.ly op.en.
volumes, rather than remembering a default prefix for each o ® APPEND implies WRITE. It is not necessary to follow an
volume. Hence, diskette swapping and access to multiple - APPEND command with a WRITE command in a BASIC
volumes at once can be cumbersome. oo program.
‘ ° . . . o
® Although the pathname for a file may be 64 characters, the e - éigltize:lt lr; Rro]?fQS dtni)qctoi{' 13.7 entries or TXT files is stored
actual name of a file may be only 15 characters, and may not = i ost significant bit off.
include any special characters or blanks (other than “period”). P
30 characters were permitted under DOS. B
® Under DOS, up to 16 files may be opened concurrently by a I JAE
BASIC program. Under ProDOS, only eight files may be :
opened at once. Also, an open file “cost” 595 bytes under DOS; X | 5
under ProDOS, a 1024-byte buffer is allocated. ‘
B

® BASIC programs which are computationally oriented will run
about four percent slower on ProDOS than they did under : [_
DOS. This is because the ProDOS BASIC Interpreter leaves B
Applesoft TRACE running (invisibly) at all times so that it can B

monitor the execution of the program and perform garbage Elf 4
collection and disk commands. On the other hand, if strings or 4o

disk accesses are used, this degradation of performance will be L’! o
more than offset by improvements in these areas. i

® Several DOS commands have been removed, including
NOMON, MON, and VERIFY. There is now no way to see the
commands in an EXEC file as they are executed.

® Ifa ProDOS directory is destroyed, it is harder to reconstruct
than was the DOS CATALOG track. More information is
stored in the directory making it harder to identify a file’s type

(m

o

Am

-

=
i W W W W oW W ow

m m m M M m

L

Li"J\ 1

'

m m om W m
L

b

.
(o)

-

mom

1<)

e

e
(e

{

| =

w

- m
A PR

(

RmANN.

CHAPTER 3

DISK Il HARDWARE
AND DISKETTE FORMAITING

This chapter will explain how data is stored on a floppy diskette
using a disk drive (Disk II family or equivalent). Much of the
information in this chapter is applicable not only to ProDOS but
also to other operating systems on the Apple computer (DOS,
PASCAL, CP/M). Because ProDOS isolates device specific code,
the contents of this chapter should not be considered a prerequisite
for understanding succeeding chapters.

For system housekeeping, ProDOS divides external storage
devices into blocks. Each block contains 512 bytes of information.
It is device independent in that each device has its own driver. This
driver enables ProDOS to read and write blocks, and additionally
to obtain the status of a device. The device itself may actually store
information in a number of ways and not necessarily in blocks.
Blocks can be thought of as a conceptual unit of data that was
created in software, having little or no relation to how data is
actually stored on an external storage device. In fact, the standard
Disk II stores information in a track and sector format. The device
driver provides a mapping between these tracks and sectors, and
the blocks. Since a sector contains 256 bytes, two sectors are
required for each block. There are 560 sectors on a diskette and
therefore 280 blocks. Chapter 4 deals with how ProDOS allocates
these blocks to create files.

3-2 Beneath Apple ProDOS

|

'/

TRACKS AND SECTORS

As stated above, a diskette is divided into tracks and sectors.
This is done during the initialization or formatting process. A
track is a physically defined circular path which is concentric
with the hole in the center of the diskette. Each track is identified
by its distance from the center of the disk. Similar to a phonograph
stylus, the read/write head of the disk drive may be positioned over
any given track. The tracks are similar to the grooves in a record,
but they are not connected in a spiral. Much like playing a record,
the diskette is spun at a constant speed while the data is read from
or written to its surface with the read/write head. Apple formats
its diskettes into 35 tracks, numbered from 0 to 34, track 0 being
the outermost track and track 34 the innermost. Figure 3.1
illustrates the concept of tracks, although they are invisible to the

eye on a real diskette.

It should be pointed out, for the sake of accuracy, that the disk
arm can position itself over 70 distinct locations or phases. To
move the arm from one track to the next, two phases of the stepper
motor which moves the arm must be eycled. This implies that data
might be stored on 70 tracks, rather than 35. Unfortunately, the
resolution of the read/write head is such that attempts to use these
pnantom halif tracks create so much cross-talk that data is lost ov
overwritten. Although standard ProDOS uses only full tracks
(even phases), some copy protected disks use half tracks (odd
phases) or combinations of the two. This will work provided that no
data is closer than two phases from other data. See APPENDIX B

4l ~ 4

for more information on copy protection schemes.

TRACK 0

-~ __*\\\\/
/ — \\ N
/ i ~ D
/7y, B
[
[\
||/ !
(I !
Vo o
Vv N\ /
A s 7
\ AN s 7
NN T - b
~ ~_ P
\\ //

|~ TRACK 17

| TRACK 34

ONE TRACK

Figure 3.4 Tracks and Sectors

e e —— e ——— s O

Tagt Ar

liJliﬁii,mwmmummmwwww

L

!

i

mm T mM MMM MEMM®™MMTMWNMNEN MWW

i A
lhl ln’

1
il

Disk ll Hardware and Diskette Formatting 3-3

A sector is a subdivision of a track. It is the smallest unit of
“updatable” data on the diskette. While ProDOS reads or writes
data a block at a time (two sectors), the device driver operates on
one sector at a time. This allows the device driver to use only a
small portion of memory as a buffer during read or write
operations. Apple has used two different track formats to date. The
initial operating system divided the track into 13 sectors, but all
recent operating systems use 16 sectors. The sectoring does not use
the index hole, provided on most diskettes, to locate the first sector
of the track. The implication is that the software must be able to
locate any given track and sector with no help from the hardware.
This scheme, known as soft sectoring, takes a little more space for
storage but allows flexibility, as evidenced by the previous change
from 13 sectors to 16 sectors per track. The following table
categorizes the amount of data stored on a diskette under ProDOS.
Both system and data diskettes are categorized.

DISKETTE ORGANIZATION
TRACKS ... 35
SECTORSPERTRACK 16
SECTORSPERDISKETTE 560
BYTESPERSECTOR...................... 256
BYTESPERDISKETTE 143,360
USABLE* BLOCKS FOR DATA STORAGE

ProDOS System Diskette 221

ProDOS Data Diskette 273
USABLE* BYTES PER DISKETTE

ProDOS System Diskette 113,152

ProDOS Data Diskette 139,776

*System Diskette includes PRODOS and BASIC.SYSTEM files only.

3-4 Beneath Apple ProDOS

TRACK FORMAITTING

Up to this point we have broken down the structure of data to the
track and sector level. To better understand how data is stored and
retrieved, we will start at the bottom and work up.

As this manual is about software (ProDOS), we will deal
primarily with the function of the hardware rather than explain
how it performs that function. For example, while data is in fact
stored as a continuous stream of analog signals, we will deal with
discrete digital data, i.e. a “0” or a “1”. We recognize that the
hardware converts analog data to digital data, but how this is
accomplished is beyond the scope of this manual. For a full and
detailed explanation of the hardware, please refer to Jim Sather’s
excellent book, Understanding the Apple 11, published by Quality
Software.

Data bits are recorded on the diskette in precise intervals. The
hardware recognizes each of these intervals as either a “0” or a “1”
We will define these intervals to be bit cells. A bit cell can be
thought of as the distance the diskette moves in four machine
cycles, which is about four microseconds. Using this
representation, data written on and read back from the diskette
takes the form shown in Figure 3.2. The data pattern shown
represents a binary value of 101.

BIT CELL
4 p sec

DATABITS

Figure 3.2 Bits on Diskette

)

-
i

M o™
T N A T R R PR TR P/

M @ @ @@ M @ Mmoo

mom

T

TP

PR T I T

Disk Il Hardware and Diskette Formatting 3-5

L e o) e

—==31T CEBLLS —

A byte as recorded on the disk consists of eight (8) consecutive bit
cells. The most significant bit cell is usually referred to as bit cell
7, and the least significant is bit cell 0. When reference is made to
a specific data bit (i.e. data bit 5), it is with respect to the
corresponding bit cell (bit cell 5). Data is written and read serially,
one bit at a time. Thus, during a write operation, bit cell 7 of each
byte is written first, and bit cell 0 is written last. Correspondingly,
when data is being read back from the diskette, bit cell 7 is read
first and bit cell 0 is read last. Figure 3.3 illustrates the
relationship of the bits within a byte.

0-0 D:] D0 o

BIT CELL 7 BIT CELL & BITCELLS BIT CELL 4 BIT
o8 1 i | cewa | emcewz mreELt | BT cewo

BYTE

Figure 3.3 One Byte on Diskette

3-6 Beneath Apple ProDOS

Al

-

=

To graphically show how bits are stored and retrieved, we must
take certain liberties. The diagrams are a representation of what
functionally ocecurs within the disk drive. For the purposes of our
presentation, the hardware interface to the diskette will be repre-
sented as an 8-bit data register. Since the hardware involves
considerably more complication, from a software standpoint it is
reasonable to use the data register, as it accurately embodies the
function of data flow to and from the diskette. For a further
discussion of the hardware, please see APPENDIX D.

Figure 3.4 shows the three bits, 101, being read from the
diskette data stream into the data register. Of course another five
bits would be read to fill the register.

DATA REGISTER
LITTITIir

‘BIT STREAM D=1 D=0
LITTET 1T

— ——- * oo bl
HERERERD
o fo-d . o 4———1":" °
(T T TTTeIr]
* = o—— 2 -——I°- TS

Figure 3.4 Reading Data from a Diskette

v

8] [A- RS] W) 1w W W am im. amy gm

LIRL
m) e b w

=

L]

{

VT VAT VR TRV TR T TRT 7R T TR T 7Y TRV TR 7,

L_J

L]

Disk Il Hardware and Diskette Formatting 3-7

Writing data can be depicted in much the same way (see Figure
3.5). It should be noted that, while in write mode, zeroes are being
brought into the data register to replace the data being written. It
is the task of the software to make sure that the register is loaded
and instructed to write in 32-cycle (microsecond) intervals. If not,
zero bits will continue to be written every four cycles, which is in
fact exactly how self-sync bytes are created. Self-sync bytes will be
covered in detail shortly.

DATA REGISTER
[Tl T e[e]

LT el Tele]— o
- T

LDl Tolole]e—o
— Py D:1l P D=0

[ofifofrJofoJoJo]e—0

[of :To[1To[oJo]o]

Figure 3.5 Writing Data to a Diskette

3-8 Beneath Apple ProDOS

A field is made up of a group of consecutive bytes. The number
of bytes varies, depending upon the nature of the field. The two
types of fields present on a diskette are the Address Field and the
Data Field. They are similar in that they both contain a prologue,
a data area, a checksum, and an epilogue. Each field on a track is
separated from adjacent fields by a number of bytes. These areas
of separation are called gaps and are provided for two reasons.
First, they allow the updating of one field without affecting
adjacent fields (on the Apple, only data fields are updated).
Secondly, they allow the computer time to decode the address field
before the corresponding data field can pass beneath the
read/write head.

All gaps are primarily alike in content, consisting of self-syne
hexadecimal FF’s, and vary only in the number of bytes they
contain. Figure 3.6 is a diagram of a portion of a typical track,
broken into its major components.

GAP 1 GAP2 | DATAFIELD | GAP3 GAP2 | DATAFIELD | GAP3 GAP2 | DATAFIELD | GaP3
FIELD FIELD FIELD

uu

vorume | aooness | avoness PROLOGUE 142 BYTFS OF enecxsom] epiLocuE

nnnnnnnn

Figure 3.6 Track Format

Self-sync or auto-sync bytes are special bytes that make up the
three different types of gaps on a track. They are so named because
of their ability to automatically bring the hardware into
synchronization with data bytes on the disk. The difficulty in doing
this lies in the fact that the hardware reads bits, and the data must
be stored as 8-bit bytes. It has been mentioned that a track is
literally a continuous stream of data bits. In fact, at the bit level,
there is no way to determine where a byte starts or ends, because

=S = = Lt AN AN L AR AR A A A A |

-

mTommEmEm

mT

=)

=y

Disk Il Hardware and Diskette Formatting 3-9

By The Old B¢ Stream

each bit cell is exactly the same, written in precise intervals with
its neighbors. When the drive is instructed to read data, it will
start wherever it happens to be on a particular track. That could
be anywhere among the 50,000 or so bits on a track. The hardware
finds the first bit cell with data in it and proceeds to read the
following seven data bits into the 8-bit register. In effect, it
assumes that it had started at the beginning of a data byte. Of
course, in reality, it could have started at any of the “1” bits of the
byte. Pictured in Figure 3.7 is a small portion of a track.

0110101110101100111101101110101

Figure 3.7 An Example Bit Stream on the Diskette

From looking at the data, there is no way to tell what bytes are
represented, because we don’t know where to start. This is exactly
the problem that self-sync bytes overcome.

A self-syne byte is defined to be a hexadecimal FF with a
special difference. It is, in fact, a 10-bit byte rather than an 8-bit
byte. Its two extra bits are zeroes. Figure 3.8 shows the difference
between a normal data hex F'F that might be found elsewhere on
the disk and a self-sync hex F'F byte.

310 Beneath Apple ProDOS

SELF-SYNC BYTE HEX FF

KIEIEIEIEIEI IR I DY

NORMAL BYTE HEX FF

EIEIEIERENEIEREN

Figure 3.8 Comparison Between a Normal Byte and a Self-Sync
Byte

A self-syne byte is generated by using a 40-cycle (microsecond)
loop while writing an FF'. A bit is written every four cycles, so two
of the zero bits brought into the data register while the FF was
being written are also written to the disk, making the 10-bit byte.
It can be shown, using Figure 3.9, that four self-sync bytes are
sufficient to guarantee that the hardware is reading valid data.
The reason for this is that the hardware requires the first bit of a
byte to be a “1”. Pictured at the top of the figure is a stream of four
self-sync bytes followed by a normal FF. Each row below that
demonstrates what the hardware will read should it start reading
atany given bit in the first byte. In each case, by the time the four
sync bytes have passed beneath the read/write head, the hardware
will be synced to read the data bytes that follow. As long as the
disk is left in read mode, it will continue to correctly interpret the
data unless there is an error on the track.

11111111001 1111111001111111100111111110011111111
p1itr1i7oofitrtr1111Jooffit11i11Joofit111111joofi1111111]
iMfitriitojoffri1riT1oop 111111 1loofi111111Joofr1111111]
11[111‘11100n1111111ﬂ00h111111jooﬁ111111j00ﬁ1w111411j
1111177001 itiittojof 111111 1oofii111111Joofrr111111]
111 1fIJ100 11111100 111111 loofitTi11111Joofi1111111]
111111710011 1pr1 1100 i11111t10Jof111t111oof1111111]
11111 1f1001 11 ii1100 11111100 iiiiiifooffiiir111
11111110001 111 f11001 1 1111100 Yp11iiit1ooff1111117]
1111111100011 1111ooffiiiii11oofiiiiiiiijooffiii11111

Figure 3.9 Self-Sync Bytes

J

i

-
'Y

\
RNy

1 (T
W W W W

[’W

m

T

o

m o onoeoon

m o m m

mm

™

L]

oml

7

ahi

T

!

L,

@ (& (& |al

(sl

=1

) |

-

1) T Y B T Y B

(!

1"

Disk Il Hardware and Diskette Formatting 3-14

We can now discuss the particular portions of a track in detail.
The three gaps will be covered first. Unlike some other disk
formats, the size of the three gap types will vary from drive to
drive and even from track to track. During the formatting process,
ProDOS will start with large gaps and keep making them smaller
until an entire track can be written without overlapping itself. A
minimum number of self-sync bytes is maintained for each gap
type. The result is fairly uniform gap sizes within each particular
track.

Gap 1 is the first data written to a track during initialization. Its
purpose is twofold. The gap originally consists of 128 self-syne
bytes, a large enough area to insure that all portions of a track will
contain data. Since the speed of a particular drive may vary, the
total length of the track in bytes is uncertain, and the percentage
occupied by data is unknown. The initialization process is set up,
however, so that even on drives of differing speeds, the last data
field written will overlap Gap 1, providing continuity over the
entire physical track. Unlike earlier operating systems, ProDOS
will let you know if your drive is too fast or too slow. The remaining
portion of Gap 1 must be approximately 75% as long as a Gap 3 on
that track, enabling it to serve as a Gap 3 type for Address Field
number 0 (See Figure 3.6 for clarity).

Gap 2 appears after each Address Field and before each Data
Field. Its primary purpose is to provide time for the information in
an Address Field to be decoded by the computer before a read or
write takes place. If the gap was too short, the beginning of the
Data Field might spin past while ProDOS was still determining if
this was the sector to be read. The 200 cycles that five self-syne
bytes provide seems ample time to decode an Address Field. When
a Data Field is written, there is no guarantee that the write will
occur in exactly the same spot each time. This is due to the fact that

the drive which is rewriting the Data Field may not be the one
which originally formatted or wrote it. Since the speed of the
drives can vary, it is possible that the write could start in mid-byte
(see Figure 3.10). For this reason, the length of Gap 2 varies from
five to ten bytes. This is not a problem as long as the difference in
positioning is not great. To insure the integrity of Gap 2 when
writing a data field, five self-sync bytes are written prior to
writing the Data Field itself. This serves two purposes. Since

|

uu

3-12 Beneath Apple ProDOS

NEW
DATA
FIELD

e —,

ADDRESS
FIELD

GAP 2 CURRENT
DATA

FIELD

— N ——

GAP 3

TR —

NEW
DATA
FIELD

Figure 3.10 ProDOS Doesn't Always Write in the Same Place

relatively little time is spent decoding an address field, the five
bytes help place the Data Field near its original position. Secondly,
and more importantly, the five self-sync bytes are the minimum
number required to guarantee read-synchronization. It is probable
that, in writing a Data Field, at least one sync byte will be
destroyed. This is because, just as in reading bits on the track, the
write may not begin on a byte boundary, thus altering an existing
byte. Figure 3.11 illustrates this.

Before

L write starts here

After

oIl o ol o Tl ofle o

Figure 3.141 Writing Out of Sync

l

o qwy a an

(m

o e k) ow oW W@ & W W U W W W o

mmemmmmmMmmmMmmemm

mom

mmmm

im) Inl m! ik k] el

AN

Disk Il Hardware and Diskette Formatting 3-13

Gap 3 appears after each Data Field and before each Address
Field. It is longer than Gap 2 and care is taken to make sure‘it
ranges from 16 to 28 bytes in length. It is quite similar in purpose
to Gap 2. Gap 3 allows the additional time needed to manipulate
the data that has been read before the next sector is to be read. The
length of Gap 3 is not as ceritical as that of Gap 2. If the following
Address Field is missed, ProDOS can always wait for the next
time it spins around under the read/write head (one revolution of
the disk at most). Since Address Fields are never rewritten, there
is no problem with Gap 3 providing synchronization, since only the
first part of the gap can be overwritten or damaged (see Figure
3.10 for clarity).

ADDRESS FIELDS

An examination of the contents of the two types of fields is in
order. The Address Field contains the address or identifying
information about the Data Field which follows it. The volume,
track, and sector number of any given sector can be thought of as
its “address,” much like a country, city, and street number might.
identify a house. As shown previously in Figure 3.6, there are a
number of components which make up the Address Field. A more
detailed illustration is given in Figure 3.12.

PROLOGUE VOLUME TRACK SECTOR CHECKSUM

D5 AA 96 | XX YY{ XX YY|XX YY|XX YY |DE AA EB

EPILOGUE

Figure 3.12 Address Field

Each byte of the Address Field is encoded into two bytes when
written to the disk. APPENDIX C describes the “4 and 4” method
used for Address Field encoding.

3-14 Beneath Apple ProDOS

The prologue consists of three bytes which form a unique
sequence, found in no other component of the track. This fact
enables ProDOS to locate an Address Field with almost no
possibility of error. The three bytes are $D5, $AA, and $96. The
$D5 and $AA are reserved (never written as data), thus insuring
the uniqueness of the prologue. The $96, following this unique
string, indicates that the data following constitutes an Address
Field (as opposed to a Data Field). The address information follows
next, consisting of the volume?*, track, and sector number and a
checksum. This information is absolutely essential for ProDOS to
know where it is positioned on a particular diskette. The
checksum is computed by exclusive-ORing the first three pieces of
information, and is used to verify its integrity. Lastly follows the
_ epilogue, which contains the three bytes $DE, $AA and $EB. The
$EB is only partly written during initialization, and is therefore
never verified when an Address Field is read. The epilogue bytes
are sometimes referred to as bit-slip marks, which provide added
assurance that the drive is still in syne with the bytes on the disk.
These bytes are probably unnecessary, but do provide a means of
double checking.

DATA FIELDS

The other field type is the Data Field. Much like the Address
Field, it consists of a prologue, data, checksum, and an epilogue
(refer to Figure 3.13). The prologue differs only in the third byte.
The bytes are $D5, $AA, and $AD, which again form a unique
sequence, enabling ProDOS to locate the beginning of the sector
data. The data consists of 342 bytes of encoded data. (The encoding
scheme used is quite complex and is documented in detail in
APPENDIX C.) The data is followed by a checksum byte, used to
verify the integrity of the data just read. The epilogue portion of
the Data Field is absolutely identical to the epilogue in the Address
Field and serves the same function.

PROLOGUE CHECKSUM EPILOGUE

[os aa aD| 342BYTES DATA | XX |DE AAEB
g

USER DATA

SIX AND TWO
ENCODED

Figure 3.13 Data Field

*Volume number is a leftover from earlier operating systems and is not used by
ProDOS.

)

1 S | SR O N | N - N 1SN (o - S | - 1A - VL AL NS AL ANL AR AT & I\
& (& d i @ [e

il

UL

B @

|

al

W e e w &

kR k& W W

t

e

Disk Il Hardware and Diskette Formatting 3-45

DISK Il BLOCK AND SECTOR INTERLEAVING

Because the disk drive is such an integral part of the Apple II
family of machines, it is important that it perform efficiently. One
major factor in disk drive performance is how the data is arranged
on the diskette. Because the diskette spins and the head that reads
and writes the data is stationary, it is necessary to wait for a
particular portion of a given track to pass by. This waiting
(rotational delay) can add significant time to a disk access if the
data is poorly arranged. Interleaving (or skewing) is the
arranging of data at the block or sector level to maximize access
speed. It effectively places a gap between blocks or sectors that
will normally be accessed sequentially, allowing sufficient time for
internal housekeeping before the next one appears. In general, if
blocks or sectors are poorly arranged on a track, it is usually
necessary to wait an entire revolution of the diskette before the
next desired block or sector can be accessed.

The first versions of Apple’s operating system used physical
interleaving on the disk. (That is, sectors were written in a
particular order on the diskette.) A number of different schemes
were used in an attempt to maximize performance. This worked
reasonably well but, because different methods were used for
different operations, performance suffered. Later versions

i

3-46 Beneath Apple ProDOS

standardized the physical interleaving (as sequential), and used a
software method to try to maximize performance. An attempt was
also made to standardize some operations, but performance still
was not optimal as evidenced by a proliferation of “fast” DOS’s.
ProDOS provides an impressive improvement over Apple’s
earlier operating systems. Several factors account for the
dramatic improvement. The routine to read data is significantly
faster, minimizing the delay occurring between read operations.
The data is dealt with in larger pieces (512 bytes vs. 256 bytes),
lowering the number of requests to the code that actually reads
and writes data (Device Driver). And almost all operations
involve files stored on sequential blocks. As a disk begins to get
full, this will not always be possible and some files will be
discontinuous: but for the most part, all operations (loading
ProDOS or Applesoft BASIC, reading or writing to files or a
directory) involve data in contiguous pieces. This greatly
simplifies the problem of finding an optimal interleaving for disk
accesses.

In ProDOS, the interleaving is done in software. The 16 sectors
are in numerically ascending order on the diskette (0, 1, 2,...15),
and are not physically interleaved at all. An al gorithm is used to
translate block numbers into physical sector numbers used by the
ProDOS device driver. For example, if the block number
requested were 2, this would be translated to track 0, physical
sectors 8 and A.* Figure 3.14 illustrates the concept of software
interleaving and Table 3.1 shows the mapping of physical sectors
to blocks for a Disk Il or compatible drive.

There are two kinds of interleaving to consider in the case of
ProDOS. First, there is the interleaving of the two sectors that
make up a block. This will be referred to as intra-block or
“within block” interleaving. Second, there is the interleaving
between blocks on a given track. This will be referred to as inter-
block or “between block” interleaving. It should be noted that we
are concerned primarily with delays within ProDOS and the Disk

II Device Driver, and not with delays that may be present in

various application packages.

*Those familiar with DOS 3.3 should note that physical sector numbers and DOS
3.3 sector numbers are not the same. Most “disk utilities” use DOS 3.3 sector
numbers and not physical sector numbers. The bottom of Table 3.1 shows how
DOS 3.8 sector numbers are related to ProDOS block numbers.

AN A =S e A & AL U b L

W b W W e W W e W

1

a

l

H

&

™

ok W ow

&

(&

Disk Il Hardware and Diskette Formatting 3-17

Table 3.1 ProDOS Block Conversion Table for Diskettes
PHYSICAL SECTOR
0&2 4&6 8&%A C&E 1&3 5&7 9&B D&F

TRACK 0 000 001 002 003 00

r 4 005 006 007
TACK Tt —oiA— D0 Wb ey
TRAC 014 015 016 0

T giggz 8;3 019 0IA__ 0IB 01C 01D 01E oi;
TRACK S 02 021 022 023 024 025 026 027
[: 034 035 036 ;
3\ ;ﬁgﬁ g gig 039 03A 03B 03C 03D 03E 8:;;*
TRACKS o0 041 042 043 044 045 046 047
TRACKY] 049 04A" 0B 04C 04D__ 04E 04F
TRACK A 89g 051 052 053 054 055 056 057
TRACKE ogo 059 05A _ 05B 05C 05D 05E 05F
IRACKC 0g 061 062 063 064 065 066 067
TRACKD 073 069 06A __06B 06C 06D 06E 06F
TRACKE 071 072 073 074 075 076 077
FEACKF 8;8 079 07A___ 07B 07C 07D 07E 07F
TRACKTD 0 0 081 082 083 084 085 086 087
TRACKI Ogs 089 08A 08B 08C 08D 08E 08F
TRACK 12 0 091 092 093 094 095 096 097
TRACKT3 098 099 09A 098 09C 09D 09E 09F
TRACK L4 8/20 0A1 0A2 0A3 __0A4___0Ah _ 0A6 _ 0A7
TRACK 13 0138 0A9 0AA 0AB__ 0AC__ 0AD O0AE 0AF
TRACK 16 OBo 0B1 0B2 0B3 0B84 0B5 0B6 0B7

’ , ’ i 0C1 0C5 0C6
%%f;f f }Z 0C8 0C9 OCA ___0CB ___0CC__0CD _0CE (0181?“
TRACK LA 0D0 0D1 0D2 0D3 0D4 0D5 0D6 0D7
TRACKTE 0D8 0D9 ODA 0DB 0DC __ 0DD __ODE _ 0DF
TRACKIC ggo 0E OB2 OE3 0E4 _OE5 0E6 _ 0E7
TRACKID OF(8 OE9 OEA OEB__OEC _ OED _ OEE _ OEF
IRACKIE 0F g 0F1 0F2 _ 0F3 0F4 0F5 0F6 0F7
TRACKIF OF 0F9 OFA 0FB _ 0FC___OFD OFE _ OFF
|| e e
¢ 10C 10D
TRACK 22 110 111 112 113 114 115 }(1)(}7:: i??
0&E D&C B&A 9&8 7&6 5&4 3&2 1&F
DOS 3.3 SECTOR
BLOCKS
/ \

SECTORS

AT
i
! A 3/16 Rotation of the Disk is Necessary

10 Read or Write One Block.

Figure 3.14 Block Inferleaving (Track 0)

3-18 Beneath Apple ProDOS

INTRA-BLOCK INTERLEAVING

When ProDOS accesses a block, it must of course access the two
sectors that make up that block. There is a small delay after the
device driver has accessed the first sector, before it can access the
second sector. This delay is different for Read and Write

operations. The Read operation is so fast that the disk can read two
sectors in a row. However, the Write operation takes longer, so for
optimal performance there must be a gap between the two se'ctors
that make up a block. If there wasn’t a gap, an entire revolution of
the diskette would be required for each block written. A single
sector provides a sufficient gap, so intra-block interleaving (within
the block) consists of one sector. The result is that ProDOS is able
to write to a given block as rapidly as is possible. Some time is lost
when reading a block, but no other interleaving scheme would
provide the same overall efficiency. Intra-block interleaving is

illustrated in Figure 3.15.

INTRA-BLOCK GAP =1 SECTOR

BLOCK 0

Figure 3.5 Intra-Block Interleaving (Within Block)

INTER-BLOCK INTERLEAVING

When ProDOS accesses a number of blocks as required in most
disk operations (i.e. reading or writing a directory or a file),
another kind of interleaving is involved. There will be a delay
between accesses, but it is now between blocks rather than sectors.
There is relatively little difference in delay time in the MLI itse}f
between reading and writing—almost all the difference occurs in
the device driver. However, when ProDOS writes a block that is
already allocated (i.e. part of an existing directory or file), it
always reads that block before writing to it. This requires an .
entire revolution of the diskette regardless of how the interleaving
is done. It turns out that, just as for intra-block operations, a single
sector is a sufficient gap for reading blocks. Inter-block
interleaving is illustrated in Figure 3.16.

mw n o

L]

m

I

e '

J)

W e b w W oW b e

e

]

L

e

m b W lm

14

e

n

N

() im) lw ta is im ls) ldi @l

(m)

|

i

Disk Il Hardware and Diskette Formatting 3-19

READING OR WRITING A BLOCK

Assume that we wish to access block 2. ProDOS passes the
request to the device driver which in turn converts the block
numberinto its track and sector representation (see Figure 3.14). .
The arm is moved to the proper track (0) and then a sector is read.
This could be any sector, because the diskette is spinning. Sectors

are continually read until sector 8 is found. The following two

sectors are then read (9 and A) which completes the read of block 2
(sectors 8 and A). Depending on where we start on the track, we
could read between 3 and 18 sectors. The same process oceurs
when writing a single block, with one small difference. After
sector 8 is located and written to, the delay required to ready the
data for sector A will cause us to miss reading sector 9. This does
not alter the amount of rotation necessary to complete the task. To

3 3 ivad +0 aithar raa A + hlanly

sumimnarize, the timey equir ed to either read or writea Smgle 010CK
consists of two factors. (We are assuming the track has already
been located). First, there is the time required to locate the first
sector of the block—this is variable and ranges between 0 and the
time of one full rotation of the diskette. Second is the time required
to actually read or write the two sectors that make-up the block—
this is fixed and always requires 3/16 rotation of the diskette.

INTER-BLOCK GAP =1 SECTOR

BLOCK O

\ BLOCK 1.

"o
»

Figure 3.16 Inter-Block Interleaving (Between Block)

3-20 Beneath Apple ProDOS

READING OR WRITING CONSECUTIVE BLOCKS

Let’s examine what occurs when a number of blocks are accessed
during reading or writing of a typical file. We will assume the file
is reasonably large and takes up a number of blocks. We will
confine our observation to a single track, in which eight blocks
comprise the file of interest. We will assume track 2, which
contains blocks 10 through 17 (as in Figure 3.17), and we will
further assume that the blocks will be accessed sequentially. When
the read/write head moves to track 2, we will start reading sectors
until the appropriate sector is found (0 in this case). Then each
sector is read until all eight blocks are found. This will require
exactly two revolutions of the disk. Writing takes significantly
longer because each block is read before being written to.
Therefore, once the first sector of the block in question is located,
one entire revolution is necessary to write each block. Upon
writing a block, ProDOS is able to locate the next block .
immediately, read it, wait through one revolution and write it. A
total of ten revolutions is required to write an entire track as
opposed to two revolutions to read it.

BLOCKS

SECTORS

Figure 3.17 Example: The Block Interleaving of Track 2

-

T T T T T e e e e ——————— ——_—— e ————_ e 4 —_ W

(A A L R

m

i

w w w il

W m w i

o m w w im

in/

CHAPTER 4

VOLUMES, DIRECTORIES, AND FILES

As was described in Chapter 3, a 16-sector diskette consists of
560 data areas of 256 bytes each, called sectors. These sectors are
arranged on the diskette in 35 concentric rings, called tracks, of 16
sectors each. The way ProDOS allocates these tracks of sectors is
the subject of this chapter.

THE DISKETTE VOLUME

ProDOS defines a volume to be any (usually direct aceess) indi-
vidual mass storage media. The discussion which follows assumes
this media to be a single 35-track diskette, but all of the structures
presented here are identical for other diskette sizes and even for a
hard disk such as the Apple ProFile. Another interesting point is
that the structure of a ProDOS volume is almost identical to that of
an Apple IIT SOS volume. This fact allows greater data compati-
bility between the two operating systems.

To make the allocation of sectors more manageable, ProDOS
pairs them up to form 512-byte blocks. Since there are 16 sectors
per track and 560 sectors per diskette volume, there are eight
blocks per track and 280 blocks per volume. These blocks are
numbered from 0 to 279 (decimal) or $0000 to $0117 (hexadec-

-imal). The arrangement of blocks on a diskette is shown in Figure

4.1. Of course, on a real diskette, skewing (discussed in Chapter 3)
would reorder the blocks on any given track, but, for the purposes
of this discussion, the blocks can be assumed to be stored
sequentially.

4-2 Beneath Apple ProDOS

Figure 41 Blocks on a Diskette

A file, be it BAS, BIN, TXT, or SYS type, consists of one or more
blocks containing data. Since a block is the smallest unit of allocat-
able space on a ProDOS volume, a file will use up at least one block
even if it is less than 512 bytes long; the remainder of the block is
wasted. Thus, a file containing 600 characters:(or bytes) of data
will occupy one entire block and 88 bytes of another with 424 bytes
wasted. Knowing that there are 280 blocks on a diskette, one might
expect to be able to use up to 280 times 512 or 143,360 bytes of
space on a diskette for files. Actually, the largest file that can be
stored is 271 blocks long (or 138,752 bytes). The reason for this is
that some of the blocks on the diskette volume must be used for
what is called overhead.

|

al

T

v m w

m

m T mm

m wxr mmwmmwmim

m

mom

1Y

W e W W e w e w w w w

L&

[1-ST WU V- T/ T

1T

Volumes, Directories, and Files 4-3

VOLUME OVERHEAD

Overhead blocks contain the image of the ProDOS bootstrap
loader (which is loaded by the ROM on your diskette controller
card and, in turn, loads the ProDOS system files into memory), a
list of file names and locations of the files on the diskette, and an
accounting of the blocks which are free for use by new files or for
expansions of existing ones. An example of the way ProDOS uses
blocks is given in Figure 4.2.

Notice that in the case of this diskette volume, system overhead
(that part of the diskette which does not actually contain files) falls
entirely on track 0 of the diskette (blocks 0 through 7). In fact,
there is room for one block’s worth of file data on track 0 (block 7).
The first block (block 0) is always devoted to the image of the
bootstrap loader. (Block 1 is the SOS bootstrap loader.) Following
these, and always starting at block 2, is the Volume Directory.
The Volume Directory is the “anchor” of the entire volume. On any
diskette (or hard disk for that matter) for any version of ProDOS,
the first or “key” block of the Volume Directory is always in the
same place—block 2. Since files can end up anywhere on the
diskette, it is through the Volume Directory key block that
ProDOS is able to find them. Thus, just as the card catalog is used
to locate a book in a library, the Volume Directory is the master
index to all of the files on a volume. In addition to describing the
name, attributes and placement of each file, it also contains the
block number of the Volume Bit Map which will be described

/EXAMPLE

NAME TYPE BLOCKS MODIFIED CREATED ENDFILE SUBTYPE
BASFILE BAS 1 <NO DATE> <NO DATE> 109
TXTFILE TXT 1 <NO DATE> <NO DATE> 9 R= 64
BINFILE BIN 1 <NO DATE> <NO DATE> 48 A=$03D0

BLOCKS FREE: 270 BLOCKS USED: 10 TOTAL BLOCKS: 280

BLOCK

O~ o,
Or-ranomtwo~moo - Qiﬁ‘ﬁtfﬁaaﬁﬁﬁﬁgaﬁlgaa'&
NE ;i/ji‘ \ 2 FREE BLOCKS é
= ‘ \ N R \\
1 \BINFILE
TXTFILE
BOOT ‘é?TLm'E, BASFILE
LOADER
IMAGE VOLUME
DIREC-

TORY

Figure 4.2 Block Usage on an Example Diskette

i
4-4 Beneath Apple ProDOS = i L Volumes, Directories, and Files 4-5
oS
next. The first four bytes of every Volume Directory block are B ! E VOLUME SPACE ALLOCATION—THE VOLUME BIT MAP
reserved for “pointers” to (the block numbers of) the previous I : When a diskette volume is first formatted, only the first seven
Volume Directory block and the next Volume Directory block. This g~ + wm blocksdescribed above are marked in use. All of the remainder of
structure is called a doubly-linked list and is handy in that, from b l = thediskette blocks are considered “free” for use with files yet to be
any block, it is easy to move forward or backward through the SR created. Each time a new block is required for a file, the free block
directory entries. The Volume Directory and Volume Bit Map are [‘ with the lowest number is used. To keep track of which blocks have
diagrammed in Figure 4.3. = | S been used and which are free, ProDOS maintains one block as the
POINTERS T0 ‘ Volume Bit Map. The Volume Bit Map is located by following a
BLOCK 2 | / FILES R pointer in the Volume Directory, however, it is almost always in
AN > oR — o = block 6. It consists of 512 bytes, each byte representing eight
DI\{??SLCL%EY —— SUBDIRECTORIES =R blocks on the volume. If the bytes are examined in binary form,
KEY BLOCK \ r each consists of eight bits having a value of one or zero. Thus, if
| T f E block zero is in use as it always is, then the first byte’s first bit is set
| - to zero. If the ninth block (block 8) is free, then the first bit of the
BLOCK 3 T | = second byte is set to one. Since there are many more bits in the
‘ Volume Bit Map (4096 bits in all) than there could ever be blocks
NEXT 13 A on a diskette, only the fitfst 280 (or 35 bytes) are used. For a
ENTRIES 5-megabyte }}ard dlsk, like the Apple ProFile, 1241 bytes are ‘
T ! E| needed.; in this case, since the number of blocks on.the volume is
x . stored in the Volume Directory, ProDOS automatically knows to
TREE expect a bigger Volume Bit Map—one which is three blocks long.
BLOCK 4 \ Bits which do not correspond to a real block (because it would be
T f i past the end of the volume) are set to zero. An example of a Volume
I : Bit Map for the vqlume mapped in Figure 4.2, is given in Figure
TR 4.4. Notice that, since three 1-block files have been allocated, a
: l total of ten blocks are marked “in use.”
= i d Blocks $0—$9inUse Blocks SA—$117 Free
BLOCK 5 R AL A
B I H r Y4 N
! 0000 0000 0011 1111 1111 1111 ... 1111
pa i -
ke u
l @0 OO3FFFFFFFFFFFFFFFFFFFFE/. ?
E[Tg @C FFFFFFFFFFFFFFFFFFFFFF
BLOCK 6]) 18 FFFFFFFFFFFFFFFFFFFFFFQQ .
E‘ d 24 000000000000000000000000
VOLUME BIT | 30 0000000000000000000000008 .« v wenn.n...
MAP <2 3C 000000000000000000000000 ...vuenn....
- (Remainder of Block Zeroes)
Figure 4.3 Linking of Volume Directory and Volume Bit Map SR Figure 4.4 Example Volume Bit Map
| P

)

4-6 Beneath Apple ProDOS

THE VOLUME DIRECTORY

When ProDOS must find a specified file by name, it first reads
block 2 of the diskette, the key block of the Volume Directory. If
the file name is not found in this block, the next directory block is
read, following the pointer in the third and fourth bytes of the cur-
rent block. Typically, the Volume Directory blocks occupy blocks 2
through 5 of a volume. Of course, as long as a block number pointer
exists, linking one block to the next, and the first Volume Directory
block is block 2, ProDOS does not really care where the rest of the
directory blocks are located. Figure 4.5 diagrams the Volume
Directory for the example given in Figure 4.2. The figure shows
the “next block” pointer (bytes +2 and +3 in the block) of block 2 in
the Volume Directory, as an arrow pointing to block 3. Each block,
in turn, has block numbers in the same relative location (+0,+1 and
+2,+3) which point backward to the previous block and forward to
the next block respectively. If no previous or next block exists, a
block number of zero is used to indicate this (block 0, being part of
the boot image, would never be a valid block number for a direc-
tory or file block, so this is a safe convention). The first block in the
Volume Directory (the key block) contains a special entry called
the header which describes the directory itself and the character-
istics of the volume, ete. This is followed by 12 file descriptive

(b4
c o \
[!
- .
°
.
o
©

DIRZCTORY ASSISTANGE

........

L\

AT MrrrToLTrMMTMTEMMTEeE NN M

4

)

(m

W @ @ w W ow oW w @l

SUT- TR T

= ' &

e W W e

Volumes, Directories, and Files 4-7

BLOCK 2
BASFILE
FIRST 12
FILENAMES \
TXTFILE
BLOCK 3
SECOND 13
FILENAMES
BINFILE

BLOCK 4

THIRD 13
FILENAMES

 BLOCK'S

LAST 13
FILENAMES

. Figure 4.5 The Volume Directory

entries. All Volume Directory blocks other than the key block con-
tain descriptions of up to 13 files each. (In practice, these entries
can also be used to describe subdirectories, but this will be covered
in detail later in the chapter.) Thus, with four Volume Directory
blocks, a total of 4 times 13 less 1 (for the Volume Directory Header
entry) or 51 files may be described.

4-8 Beneath Apple ProDOS

THE VOLUME DIRECTORY HEADER

The Volume Directory Header is the first entry in the first block
of the Volume Directory. As such, its first byte follows the four
bytes of next/previous block pointers, so its first byte is at +$04. A
deseription of its format follows:*

$04

$05-$13

$14-$1B
$1C-$1F

STORAGE_TYPE/NAME_LENGTH: The first nibble
(top four bits) of this byte describes the type of entry. In
this case, this is a Volume Directory Header so this nib-
ble is $F. The low four bits are the length of the name in
the next field (the volume name).

VOLUME_NAME: A 15-byte field containing the name
of this volume. The actual length is defined by
NAME_LENGTH above; the remainder of the field is
ignored. No “/” is present as the first character since this
is only used to delimit different level names but is not
part of the names themselves.

Reserved for future use. Usually zeroes.

CREATION: The date and time of the creation (format-
ting) of this volume. This field is zero if no date was
assigned. The format of the field is as follows:

BYTE 0 and 1 —yyyyyyymmmmddddd year‘/mopth/ day
BYTE 2 and 3—000hhhhh0Ommmmmm hours/minutes

$20

where each letter above represents one binary bit. This
is the standard form for all create and modify date/time
stamps in directories.

VERSION: The ProDOS version number under which
this volume was formatted. This field tells later versions
of ProDOS not to expect to find any fields which were
defined by Apple after this version of ProDOS was
released. This field indicates the level of upward’com—
patibility between versions. Under ProDOS 1.0, its
value is zero.

*Unless otherwise indicated, all multiple byte numeric value.& such as b}ocl_(.
numbers, EOF marks, ete., are stored least significant byte first, most significant
byte last (LO/HI).

y

AENE RN NN NN EEEEE.

”’ ” A’!‘, r'

W W Wi

@ @ W W il il

L&)

Volumes, Directories, and Files 4-9

$21

$22

$23

$24

$25-$26

$27-$28

$29-$2A

MIN_VERSION: Minimum version of ProDOS which
can access this volume. A value in this field implies that
significant changes were made to the field definitions
since prior versions of ProDOS were in use and these
older versions would not be able to successfully interpret
the file structure of this volume. This field indicates the
level of downward compatibility between versions.
Under ProDOS 1.0, its value is zero.

ACCESS: The bits in the flag byte define how the direc-
tory may be accessed. The bit assignments are as
follows:

$80 — Volume may be destroyed (reformatted)

$40 — Volume may be renamed

$20 — Volume directory has changed since last backup
$02 —Volume directory may be written to

$01 — Volume directory may be read

All other bits are reserved for future use.

ENTRY_LENGTH: Length of each entry in the Volume
Directory in bytes (usually $27).

ENTRIES_PER_BLOCK: Number of entries in each
block of the Volume Directory (usually $0D). Note that
the Volume Directory Header is considered to be an
entry.

FILE_COUNT: Number of active entries in the Volume
Directory. An active entry is one which describes a file
or subdirectory which has not been deleted. This count
does not include the Volume Directory Header. Note
that this field’s name is a bit misleading since the count
also includes subdirectory entries.

BIT_MAP_POINTER: The block number-of the first
block of the Volume Bit Map described earlier. This
value is usually 6.

TOTAL_BLOCKS: The total number of blocks on this
volume. $0118 is for a 35-track diskette (280 decimal).
This number may be used to compute the number of
blocks in the Volume Bit Map as described earlier.

4-10 Beneath Apple ProDOS

FILE DESCRIPTIVE ENTRIES

Each file (or subdirectory) on a volume has a File Descriptive
Entry in the Volume Directory or another directory. These entries
all have the same format:

$00

$01-$0F

$10

STORAGE_TYPE/NAME_LENGTH: The first nibble
(top four bits) of this byte describes the type of entry.
Currently assigned values are:

$0 = Deleted entry. Available for reuse

$1 = Fileisaseedling (only one data block)
$2 = Fileisasapling (2 to 256 data blocks)
$3 = Fileis a tree (257 to 32768 data blocks)

$D = Fileisasubdirectory
$E = Reserved for Subdirectory Header entry
$F = Reserved for Volume Directory Header entry

The low four bits are the length of the file or subdirec-
tory name in the next field. When a file is deleted, a $00
is stored in this byte.

FILE_NAME: A 15-byte field containing the name of
this file. The actual length is defined by NAME_LENGTH
above; the remainder of the field is ignored.

FILE_TYPE: Primary file type. The hexadecimal \(alue
of this byte gives the file type as shown in the following
table:

TYPE | NAME | DESCRIPTION

$00 Typeless file

$01 BAD Bad block(s) file

$04 TXT Text file (ASCII text, msb off)
$06 BIN Binary file (8-bit binary image)
$0F DIR Directory file

$19 ADB AppleWorks data base file

$1A AWP AppleWorks word processing file
$1B ASP AppleWorks spreadsheet file
$EF PAS ProDOS PASCAL file

n

PTEOTOT@OONMTW

M

®

!

E X TET

/f

1/

(el miom! ml el al el im) ml m) m M M ow (mi (mi (s

im)

T I Y

1§

Volumes, Directories, and Files 4-11

$FO0 CMD ProDOS added command file
$F1-$F8 User defined file types 1 through 8
SFC BAS Applesoft BASIC program file
$FD VAR Applesoft stored variables file
$FE REL Relocatable object module file
(EDASM)

SFF SYS ProDOS system file

All other types are either SOS file types or are reserved
by Apple for future use. See APPENDIX E for a
complete list.

$11-§12 KEY_POINTER: The block number of the key block of

the file. In the case of a seedling file, this is the block
number of the only data block. For saplings, this is the
block number of the index block. For tree files, this is
the block number of the master index block. (More on
these file structures later.) If the file is a subdirectory
file, this is the block number of its first block.

$13-$14 BLOCKS_USED: The total number of blocks used by

this file including index blocks and data blocks. If the

file is a subdirectory, this is the number of directory
blocks.

$15-317 EOF: The location of the end of the file (EOF)asa

3-byte offset from the first byte. This can also be thought
of as the length in bytes of a sequential file.

$18-$1B CREATION: The date and time of the creation of this

$1C

file. This field is zero if no date was assigned. The format
of the field is as follows:

BYTE 0 and 1—yyyyyyymmmmddddd year/month/day
BYTE 2 and 3—000hhhhhOOmmmmmm hours/minutes

where each letter above represents one binary bit. This
1s the standard form for all create and modify date/time
stamps in directories.

VERSION: The ProDOS version number under which
this file was created. This field tells later versions of
ProDOS not to expect to find any fields which were
defined by Apple after this version of ProDOS was
released. This field indicates the level of upward com-
patibility between versions. Under ProDOS 1.0, its
value is zero.

4-12 Beneath Apple ProDOS

$1D MIN_VERSION: Minimum version of ProDOS which
can access this file. A value in this field implies that sig-
nificant changes were made to the file structure defini-
tion since prior versions of ProDOS were in use, and
these older versions would not be able to successfully
interpret the file structure of this file. This field indi-
cates the level of downward compatibility between ver-
sions. Under ProDOS 1.0, its value is zero.

S1E ACCESS: The bits in this flag byte define how the file
may be accessed. The bit assignments are as follows:

$80 — File may be destroyed

$40 — File may be renamed

$20 — F'ile has changed since last backup
$02 — File may be written to

$01 —F'ile may be read

All other bits are reserved for future use. An unlocked
file’s ACCESS is usually $C3. If a file is locked,
ACCESS will be set to $01. Subdirectory files which
have a non-zero FILE_COUNT field will be locked until
all files described by them are deleted.

$1F-$20 AUX_TYPE: Auxiliary type field whose contents
depend upon FILE_TYPE. Common uses are as follows:

TYPE USE

TXT |Random access record length (L from OPEN)
BIN [Load address for binary image (A from BSAVE)

BAS |Load address for program image (when SAVEd)
VAR |Address of compressed variables image (when
STOREd
SYS [Load address for system program (usually
$2000)
$21-$24 LAST_MOD: Date and time at which file was last modi-
fied. This field is zero if no date was assigned. Format is
identical to CREATION above.
$25-$26 HEADER_POINTER: Block number of the key block

for the directory which describes this file.

Figure 4.6 is an example of a typical Volume Directory block for
the example introduced with Figure 4.2. In this case, there are
only three files on the diskette so only the first three directory
entries are filled in. The remaining directory entries have never
been used and contain zeroes.

|

-\
& W & W @ W w w W W

- N - A - A & A & A AL A\

mmrmwmERTM@EMEMDODMEM

mmmihr

t

e ol R o w

gt

Volumes, Directories, and Files 4-43
[VOLUMEDIRECTORY HEADER |
—
SF Indicates Volume Directory Header Entry Follows
i Volume Name Is 7 Characters Long
!
- x ’(- §118(280) Blocks on Volume Total
|_POINTERFIELDS | | | | lo
I NextDIR | [| f M'\Jr?lrfmm < Volume Name Is "EXAMPLE
No Previous B|°C§‘53 O) i | Versions =0 NG
3FilesinThis | DIRBlock._ N / / -~ Volume DIR Access
DIR ~ A ~ p ;
—~_ | a0 @w@egggﬂﬁhsgu i0504C45) ... WEXAHPLE] oo DESTROU/RENAME
VOL Creation "5 1900002000000 000HOR00000 . veereiivs.
Date {not sel| —— 900940000000 0[0 00 0[C 3 7w v e—— Entry Length s S27 Bytes
“ENTRIES PER BLOCK™ 4+{o00300we6001801]1742415346 .. .BASF
s SD 30 494€4500000000006000000FCHEE e —BASFileType
VOLBItMag/+//ﬂ'1wmwswumawwww@
inBlock6 | 48 QUE3010800000000020601754 .C......... T Stindicates Seedling File
54 585446494C45000000000000 XTFILE-wevis — $7Characters in Name

TXT File Type —64—0864{3 4080001 7
6C 00000GHUE34000000008000 C@v o 1Blockin File
78 @01742494E46494C450@9008 . JBINF [LEL+———File Name
BIN File Type — —B4—060806008866D900PL 1083000+ rrreeEndof File at 530
90 0060060000 adE3DPe030000— ————Date File Last Modified (not
File Creation Date —9C 300002006 00R YV OVEQOITEBE set)
(not set) A8 000p9T000000DE0000DEGA60 s e
B4 _06G0000G00000009000000€8 ceee T AUX_TYPE—For BIN
_co ew@cm@ewwewm%ww\x.. File: AS300
DIR Header Block~~ CC G06000600000600060BER000 . . e

Y oeeeeeces-n. . _KeyBlock=89

For This File (Remainder of Block Zeroes) BN
“Access' SE3 = DESTROY/RENAME Enabled
Backup Needed
. WRITE/READ Enabled
Orig/Minimum Version of File = 0
Figure 4.6 Example Volume Directory Block
FILE STRUCTURES

One of ProDOS’s major jobs is to keep track of the blocks which
make up a file. When programming, the user need never know that
a file is actually made up of one or more blocks scattered far and
wide all over the diskette volume. ProDOS must make the file
appear to the programmer to be a continuous stream of sequential
data.

So far the files shown in the examples here have had only one
block. This was done to avoid complicating the discussion of the
Volume Directory. In practice, however, very few files are 512
bytes or less in length. ProDOS defines three file structures to
handle files of different sizes:

The Seedling —for files of 512 bytes or less

The Sapling — for files with more than 512 bytes but
less than 128K bytes of data

— for files with more than 128K bytes of
data up to 16 megabytes (16,777,216
bytes).

The Tree

4-14 Beneath Apple ProDOS

#

|

n
(n

Volumes, Directories, and Files 4-15

G SAPLING
L FILE

Examples of seedling files have already been shown. A seedling
file consists of a single data block whose number is stored in the
KEY_POINTER field in the file entry of the directory. Thus, a
seedling file, by definition, costs only one block of storage (and a
file descriptive entry).

For the purposes of this discussion, let us assume that we had
run the following Applesoft BASIC program against our example
disk volume from Figure 4.2.

10 PRINT CHRS(4);"OPEN TXTFILE,L64"
20 FOR I=0 TO 2

3¢ PRINT CHRS (4);"WRITE TXTFILE,R";I
4¢ PRINT "RECORD";I

50 NEXT I

60 PRINT CHRS (4);"CLOSE TXTFILE"

70 END

This program creates the TXT file, “TXTFILE”, with a record
length of 64 bytes. It then writes three records containing the
strings “RECORD0”, “RECORD1”, and “RECORD2". The total

size of this file is then 3 times 64 or 192 bytes. Since this is less than

512 bytes, the file is stored as a seedling.
Now, assume that statement 20 is changed to read:

20 FOR I=¢0 TO 100

14l

m T MmMHmwWwmMmMmmMmimmm
TN VRRNT. TRV PR V. VR X VIRF 7

B w0 W w w w

bl

i 1B @

mr 7T Mm@ Mm@MmrEmMMW
g e

LEJ

n

-

Y

and the program is rerun. The file it creates will now contain 101
records of 64 bytes each, so the total size is 6464 bytes. As the ninth -
record is written (RECORDS), ProDOS discovers that the original
seedling block is full. There is no room in the directory to store
another block number, so ProDOS creates what is called an index
block. This block contains the block numbers of each data block in
the file in the order that they should be accessed. Using an index
block, ProDOS can describe the file in a sequential and orderly
way, even though its data blocks may not be physically contiguous
(next to one another on the diskette). For example, if the previous
data block in a file was 47, it is not necessary to store the data
which follows it in block 48. Instead, any free block located any-
where on the diskette may be used simply by placing its block
number next to 47’s in the index block.

Thus, in our example, a new block is allocated to be the index
block ($A), another new block is allocated to be the second data
block ($B), both the original data block’s number and the new data
block’s number are placed in the new index block, and, finally, the
directory entry for the file is updated so that it now points to the
index block instead of the seedling data block. Of course, the
STORAGE_TYPE field in the directory entry must also be
changed to indicate that this is now a sapling file and is no longer a
seedling. Index block entries which are not associated with any
data block yet (such as those beyond the end of file position) are set
to zeroes. Since a block is 512 bytes long and block numbers
require a 2-byte field, this index block can store pointers to up to
256 data blocks representing up to 131,072 bytes of data (128K).
Obviously, most files will fall within this class of file structure. A
diagram of the general form of a sapling file is given in Figure 4:7.

DIRECTORY ENTRY INDEX BLOCK

S

NEXT TO
FIRST BLOCK SECOND BLOCK THIROBLOCK | o4 ues LAST BLOCK
OF “TXTFILE” OF “TXTFILE" OF “TXTFILE" OF “TXTFILE

“TXTFILE™ —

LAST BLOCK
OF "TXTFILE"

Figure 4.7 Sapling File Organization

4-16 Beneath Apple ProDOS

The index block for TXTFILE is given in Figure 4.8. Notice that
the first block of the file is still block 8, the original data block of
the old seedling version of TXTFILE. Notiee also that in an index
block, the least significant byte of the block numbers are stored in
the first half of the block, and the most significant byte (in this
example all MSB’s are $00) in the last half. This was done to sim-
plify indexing into the block (the 6502 index registers can only
index up to 256 bytes at a time). Thus, to find any given block, one

BLOCK $A e

——

(000 [F80BOC@DOEGF101112131415
00C [1L6l000000606000000000000000
018 0000UDEEQI00000000000000

024 000G000000VERQO00GE00000
03¢ 000000000000000

$0008 =+ Firstdata

@3C @00GeE000006aa0daa0 B e L
048 GOGECOOGI00EE00B00000000 s v vnnrennn]; gzggtggme's
054 0P00GC0G000E0000E0000000 .5 :

FIRST 060 200000000000000000000000

HALF OF 06C GC0000B00000E00000000000 :

INDEX 378 00BPOECOAEECRCE0G00000E0

BLOCK @84 0OGOCE0EC0G00G00G00EIT0 :

Ls8 090 GE0EE0000000000000000000 N

(LSBs) §9C ¢00eEE0eEC000G0000000E00 \

QA8 (0000GOO00002000000000000 ..
@B4 000000000000000000000000
@CO 0000000000000 0B000

@CC 0000000 EA00R00RRTUBAG00 «.ovee s vnnnn $0016 = Last data
gD8 0000000000037 0000008800 ...ttt block of file is
GE4 0000000QE07000000000000008 ...vvvveennn / Block $16

L OFQ 09000000000000000
QFC
100 [000000000000000000000000

10C [00/000060000000000000060000
118 60000000DUse8L0a000060008 ...
124 200000000000000000000000

130 000000000000000000000000
13C 000000000000000000000000

SECOND 148 (¢Q003Q000000C000000000000
HALF OF 154 G0000B000000000000000000
INDEX 160 020000000000000000000000

16C 000000000000000000000000
BLOCK 178 -3000000000000000000000083

(MSBs) 184 0COOGPEG0000000000000000
190 000000000000000000000000 ..
19C 600000s000000G0000000000 ..
1A8 0COG00GE000I000000000000 ..
1B4 60000GGRC0000000000C0000
1C@ 600eEr000008a00000000000

1CC 000000000000000000000000
1D8 00000A00000000000000802060
1E4 000000000000000000000000
1F0 000000000000000000000000
1FC 000000809

Figure 4.8 Example Sapling Index Block

m m =

TP MOLMMMPTMMOMMIN
La)

m

mrmwmwmrmmm
(e! .

4 'ul

& @ @ W Ww Ww w

) & L&l

(V50 B VT b

sy

e

(g

lg!

i

Volumes, Directories, and Files - 4-47

must assemble a block number by picking the Nth byte and the N
+256th byte in the index block where N is the relative block
desired. :

Suppose that we now modify our program again so that 2144
records will be written. This pushes the total file size up to 137,216,
more than can be described by a single index block. ProDOS must
“promote” the file to the next level of the hierarchy, a tree file. A
tree file consists of a single master index block, pointed to by the
directory entry, which, in turn, contains the block numbers of two
or more other index blocks. These lower level index blocks contain
the actual data block numbers. This structure is diagrammed in
Figure 4.9. Thus, since the master index block can describe 256
“subindex” blocks, and each subindex block can describe 256 data
blocks, in principle this structure would support files of up to 32
megabytes! In order to limit block numbers to a 2-byte signed
value of 32767, however, an arbitrary upper limit of 16 megabytes
was imposed. In other words, a master index block can never be
more than half full.

The entire file structure for TXTFILE is depicted in Figure
4.10. Note that the original index block of the sapling file (block
$A) became the first subindex block of the tree file. Also, when the
changeover was made, the master index block was allocated first

DIRECTORY ENTRY

MASTER
“TXTFILE” -L_ INDEX BLOCK
o
LAST
INDEX BLOCK 0 INDEX BLOCK
crseens G|
FIRST BLOCK SECOND BLOCK | . o) 256TH BLOCK 257TH BLOCK LAST BLOCK
OF “TXTFILE OF “TXTFILE" OF “TXTFILE" OF "TXTFILE" ceee OF “TXTFILE”

l

Figure 4.9 Tree File Organization

4-18 Beneath Apple ProDOS .

J

i

Volumes, Directories, and Files 4-19

BLOCK $010A MASTER INDEX BLOCK

9 GUGBBGWJU@WZ@(N .

M
BLOCK $000A INDEX BLOCK 0 BLOCK 50108 INDEX BLOCK 1

200 [G8¢BOCUDOEOFLOLL12131415 v euuen.nnn 00¢ OCUDGEGFLOL11121314151617} .
gec 18191A1BICIDIELIF282]1 ..uvevnnnns! G0C 0PPA0CEROUVBLO0BRR000
18 d25262728292A2B2C2D0 "#S%s ' () *+, - 218 0000000006AB0BVAREE .
624 1323334353637383% ./0123456789 ¢24 000000000V00000CNC0P00E60

630 :;<=>?@ABCDE 638 0006000000000 0000YR00ERD .
#3C FGHIJKLMNOPQ ¢3C ¥00G00000LLRR00eRNE0E000
u48 RSTUVWXYZ (/] 048 (0UDOCECCQ0CO600H0000RE0

100 [60)90000600G00A3000060006060vu.s 100 9101010101¢101¢101610103]
lec

118 008000PQ0¢00000000000008000vn.. 118 0000000000000000CG6HB0G00 ..

124 C00000PRYO000EY0ICO0AB00G0 . .ovunnenn.n 124 002000000000000C00H00000 ..

130 000000000¢G000QEQ06000008vvveen.. 130 03000000000000p00900G00006 .

13C 0000000000Y000AC000600G000onvnunns 13C ©60000¢0060006000p0Y0000000 .

148 - 148 ¢0G0000R000C00PGHACAGR00 .

1
L
\

\\

\
\
BLOCK $0008 DATABLOCK 0 BLOCK 80117 Al DATA BLOCK 267

@00 5245434F5244300DRVUCUGCEU RECORDO..... 000 5245434F524432313336000¢ RECORD2136..
POC 0000000002006 0GB0BUCRROB0Y Q@C 0000QP0BO00000R00UVBL00BE
@18 200000000002V 0BGABAVUYY @18 000GQEAGUOYBIRBULA0RBYCUYEL
024 00000CB00CBEECGE00030000¢ 024 000000R0VGRVOCUBRLLRIVOL ...
930 000000000¢0003030CHOR0VY .. 030 00QO2EREOQUVYATCOULOLBUL ...
B3C 0Q000B005245434F5244310DRE @3C 000000005245434F52443231
048 000000Q00CUGROBA0GBLCVO000 @48 33370D00OICUOGBUOUEBLIUYO0 J7

............ 1eC BBGO@GBW@GGBGG;EWDM} g0

\

)

m M MmWmmMmwmhMw
la 4 @ W W i

L:J

m

2

= = W ooial

J

l;

-

e

|

kl

|/

mmmmmmTmmMmm§”mMmm

el

&'

Figure 410 Example Tree File

E

LA U L L L L L L L L L LIS

I

(4
e

!

i/

($10A), then the second subindex block ($10B), and finally the data
block whose allocation made the file into a tree file ($10C). The last
block allocated is for RECORD2136 through RECORD2143 (for a
total of 2144 records). This is the last block on the diskette ($117),
and, since no blocks were ever freed, the diskette is now full.
Although TXTFILE has only two subindex blocks and it is nearly
as large as a diskette, this does not imply that all tree files will
have two subindex blocks, as will become apparent when sparse
files are discussed.

FILE DATA TYPES

Unless they are directories (DIR type files), all files conform to
one of the three file structures described above even though the
data in files may have different intended uses. A file might contain
an Applesoft BASIC program which was SAVEd in addition
to being a sapling file. It might be a binary memory image which
was BSAVEd and conforms to the seedling structure. Or it might
be data for a BASIC program in a TXT file and have the tree
characteristic. File types, such as BAS, TXT, or SYS are less
important to ProDOS than they are to the programs which use the
files. This means that the basic structure of a BAS file is identical
to that of a BIN file—only the interpretation of the data differs.
ProDOS maintains a consistent set of file types by convention, and
toalimited extent, the BASIC command interpreter enforces these
conventions (e.g., “FILE TYPE MISMATCH?”). You are not pre-
vented, however, from storing an Applesoft BASIC program
image in a TXT file if you really work at it!

TXT FILES

The TXT or text file in its sequential form is the least compli-
cated file data type (in its random form it is, perhaps, the most
complex). A sequential TXT file consists of one or more records,
separated from each other by carriage return characters (hex
$0D’s). This structure is shown and an example file is given in
Figure 4.11. Usually, the end of a TXT file is signaled by the End
Of File (EOF) position stored in the directory entry for the file.

4-20 Beneath Apple ProDOS

il

EOF

RECORD 0 RECORD 1 RECORD 2

A Sequential Text TXT Type File

END OF FILE
POSITION

RECORD 0

/N
@9 312C322C332C340DP0O000060 1,2,3,4,....
gC 000000000000 000000000000 ...ccoavevee
18 0000000000000 00000000000 ...cvvvvenne
24 000000000000000000000000 ...cceevenee
30 000000000000000000000000c.cvvvnn
3C 000QQ0000000000000000000 ...ccv0nveen
48 0Q00000000000000000000000v0vunens
54 000000000000000000000000 ...coceveeen
(Remainder of Block Zeroes)

Figure 411 Example Sequential Text File Block

Since $0D is used to delimit records, carriage returns should not
appear within a record. Usually, only valid ASCII characters are
allowed in a TXT file to make them accessible to BASIC programs
(i.e. printable text, numerics or special characters; refer to p. 8 of
the Apple II Reference Manual or p. 16 of the Apple II Reference
Manual for ITe Only). This restriction makes processing of a TXT
file slower and less efficient in the use of disk space than with a
BIN or VAR type file, since each digit must occupy a full byte in
the file.

When TXT files are accessed randomly, or by record number,
“holes” can appear between records. In the example given earlier
and in Figure 4.12, each record is allotted 64 bytes of space in the
file. By doing this, it is easy to find any record by multiplying its
number by 64 and using this as a byte offset into the file. The
record length is chosen as the maximum amount of space any
record might occupy. Thus, records with less than 64 bytes of data,
such as the ones in the example, will have wasted space at their end
(filled, in this case, with $00s). This wasted space is called padding.
The actual data in each record is terminated with a $0D (carriage
return) just as in the sequential text file record (allowing BASIC to
read it as a single INPUT line). In this way, data within a single
record can be accessed as if it was a miniature sequential TXT file.
If an attempt is made to sequentially read beyond into the padding,
a null string is returned.

|-

"
a

LA

(mmp

-

l

& @ W o ow W ow uw

-\

l

ol

[

=l

!

™

il
LEJ}

e lal

l

l

I

& e W

f

=

m

le)

!

le!

!

=)
\!

|

(-
!

|

-
.

f

it

iz

N{
ii!

Volumes, Directories, and Files 4-24

When the randomly organized file is OPENed, the record length
given with the “L” keyword is stored in the AUX_TYPE field in
the directory entry for the file. Then, if later OPENSs omit this
keyword, the original value can be supplied by ProDOS.

Notice that in the example in Figure 4.12, record 3 has not been
initialized. Indeed, none of the other records following RECORD2
have anything but $00s in them. By WRITEing to specific records
in a non-sequential order, it is possible to leave very large holes
between records which contain data. Such files are called “sparse.”
If a hole falls within a block which has other records which contain
data, it is represented by binary zeroes. But if the hole covers entire
blocks, ProDOS does not bother to allocate them at all. There is no
point in wasting disk space on holes! Thus, if the next record con-
taining data in our example file was RECORDZ25, for instance, the

RECORD 0 RECORD 1 etc.

DATA PADDING DATA PADDING

A Random Text TXT Type File

DATA (c8) __Padding to Make L64
\ -
00 5245434F524430QD@D000Q RECORD@.....

gC 0090000000000000000 BOF .eeecenannnn

18 0GO0O0000000E0RBEBI00IBE «.ovnrennnnn RECQRDQ

24 0BEOOCE00000COBF0000TPET «.uueeenn-- 64BYTE

30 GE00GE0000C0000000000000 . uueae....

3C 0000@#005245434F5244310DRECORDL.

48 000000000GE0000080000000 «ouueennen-- RECORD 1

54 GOOOEGO0GEE0C0FE00G0000F «nveueneennn- b IS

60 00Z000000000000000000000 .ovveeennn.

6C 00G000G0GIG000000000000 «.nueenn. .-

78 00000PP000Fe068@5245434FRECO

84 5244320D00000000000FAG00 RD2.vv.nn...

90 GUOCEeC00A0000B0000G0000 «.nuaennnnn. RECORD 2

9C GEC00IF00OOIEOBGBOCOGBE0 «vunrennnnn. 84 BYTES

AS 0POCOBIGO0O0R00BI000CBB0 o uuueennnnn.

B4 GOP00CIC00GI0000F0000000 o uunrennn...

CO G00C000000000G0000000000 » . nveeerse- NODATAIN
(Remainder of Biock Zeroes) RECORD 3

r AUX_TYPE in directory contains record length = 64 J

Figure 442 Example Random Text File Block

4-22 Beneath Apple ProDOS

rest of block 0 would contain zeroes (as it does now), no block would
be allocated for block 1 or block 2, and block 3 would contain zeroes
until the position of RECORD25 was reached. This is diagrammed
in Figure 4.13. Notice that the positions of the “phantom” blocks
are marked in the file’s index block with zeroes. Thus, although the
file covers a “data space” of six blocks, only three data blocks are
actually allocated. It is possible to create a file with only two data
blocks which covers the entire 16-megabyte data space. Such a file
would incorporate one master index block with an entry at+0 and
at +7F. All the subindex blocks in between would be “phantom,” or
not allocated and marked with zero pointers. The first index block
would contain a single entry at +0 for the first data block. And the
last index block would contain a single entry at +FF for the last
data block. A 16-megabyte file using only five blocks of disk space!

BIN FILES

The structure of a BIN type file is shown in Figure 4.14. An
exact copy of the memory selected is written to the disk block(s).
The original address from which the memory was copied is stored
in the AUX_TYPE field of the directory entry for the file. The
EOF position in the directory records the length of the binary
image. These values are those given in the A and L (or E) keywords
of the BSAVE command which created the file. ProDOS can be
made to BLOAD or BRUN the binary image at a different address
by specifying the A (address) keyword when the command is
entered, or by changing the address in the directory entry (this is
sometimes necessary if the file cannot be BSAVEd from the loca-
tion where it will run, such as from the screen buffer).

\

1

BLOCK 3 OF : ' BLOCK 50F

FILE H] FILE
| ,

INDEX BLOCK

N

1 hl

) T
BLOCK 0 OF ! 0 !
FILE] 1)
i P i

Figure 413 A Sparse File

)\

4

m wrwmMmmMmmm
a

m

m

m ™ mmT™mMmmMmmim

m m

n Tmmw

@ & w o w @

a

e & L

(A V=1 B E VR V51 I VY

& W

j

m

;

-

i

44

Volumes, Directories, and Files 4-23

MEMORY IMAGE...

A Binary BIN Type File

$30 Byte Binary Memory Image
/ \

00 4COOBE4COOBEUQOUOFFFFOU0C L.>L.>.. ..
gC FFFFOOQQFFFFOOQOFFFFO000 _ _ ..
18 FFFFOQQ@OFFFFOBCG59FAJPBE _YZ.>
24 1B4CQU3BE4COQBE4CS9FFEBBF .L.>L.>LY K? EOF: Marks End of

30
3C
48
54
60
6C
78
84

000000000000000000000000
000000000 000000000000000

‘00000000000 0000000000000

000000000000000000000000
Po0@00000000000000C00000
300000000000000000000000
00000000000006000000006000¢
0eU0000000000000000006000

"""""" Binary Image

(Remainder of Block Zeroes)

AUX_TYPE in Directory Contains Address = $3D0
EQF in Directory Contains Length = $30

Figure 414 Example BIN File Block

BAS FILES

A BASIC program is saved to the diskette in a way that is nearly
identical to BSAVE. The format of a BAS file is given in Figure
4.15. When the SAVE command is typed, the ProDOS BASIC
command interpreter determines the location of the BASIC pro-
gram in memory and its length by examining Applesoft’s zero
page addresses. An image of the program is written to the file and,
again, the AUX_TYPE and EOF fields of the directory entry

represent the address and length. Notice that the character repre-

sentation of the program is somewhat garbled. This is because, in
the interest of saving memory, BASIC “tokenizes” the program.
Reserved BASIC words, such as PRINT, IF, END, or CHRS, are
replaced with a single hexadecimal code value (set off from other
characters by its most significant bit being forced on). A complete
treatment of the appearance of a BASIC program in memory is
outside of the scope of this manual, but-a partial breakdown of the
program in Figure 4.15 is given.

4-24 Beneath Apple ProDOS

[PROGRAM MEMORY IMAGE...J

An Applesoft BAS Type File

10 PRINT CHRS$(4);"OPEN TXTFILE,L64"
20 FOR I=0 TO 2

39 PRINT CHR$(4);"WRITE TXTFILE,R";I
49 PRINT “RECORD";1I

50 NEXT I
68 PRINT CHRS(4);"CLOSE TXTFILE"
70 END
$BA = PRINT
Address of Next . 90 et
Line~1 \ mem $E7=CHRS (4)."0..etc.
0¢ [LEggoaooBAETR2834293B224F]:G(4);"0
0C 50454E2054585446494C452C PEN TXTFILE,
18 4C36342200290814008149D0 L64".)....1IP
24 3Q9Cl1320047081EQOGBAE72834 @A2.G...:G(4
30 293B22575249544520545854) ;"WRITE TXT Appiesoft
3C 46494C452C52223B49005708 FILE,R";I1.W. Program Image
48 2800BA225245434F5244223B (.:"RECORD";

54 49005E08320082490078083C I..2..1.X.<
60 QOBAE72834293B22434C4F53 .:G(4);"CLOS
6C 452054585446494C4522007E E TXTFILE".

EOF: Marks 78 ©84600800008000ATO000000 Foueenne.--
Endof Program 84 000000000000000000000600
Image 90 ©0E000GEC00EAC000E006000 ..o ...

9C 000Q000000000000000000060cvun...
A8 (00000000000 000000000000 ... vuen
B4 00000C000000000000000000 ...ovevenens
CP 00Q000000000000000000000 +..cnovuvuanvan

(Remainder of Block Zeroes)

AUX_TYPE in Directory Contains Program Start Address = $801
EQF in Directory Contains Program Length = $80

Figure 4.15 Example BAS File Block

OTHER FILE TYPES (VAR, REL, SYS)

Several other file types have been set aside by ProDOS. Many
are those found in the SOS operating system (e.g. PCD, PTX, PDA
for Pascal, etc.). These are listed in APPENDIX E and will not be
covered here since they are not indigenous to ProDOS. Other
ProDOS file types include BAD and CMD. BAD files are obviously
intended to mark permanent I/O errors on a disk’s surface from
accidental use, but there seem to be no utilities within ProDOS 1.0
which create them. The CMD and PAS file types are not currently
supported by the ProDOS BASIC command interpreter, so their
planned structures are anyone’s guess. AppleWorks file types are
designed for the AppleWorks package, and their structures are

mmMmmMTTmWEPTMWOWMMNMNDMWMNTMMOTDMMMN

mm T TTMTMETMMTMMWMTM

|

i

@ W W W i

L&

w &l &

W & Wk &

LB G e

*]

L

1%

14

(1Y

Volumes, Directories, and Files 4-25

specific to that package. The formats of the VAR, REL, and SYS
files are defined, however.

The VAR file type is used to store the contents of a BASIC pro-
gram’s variables using the STORE command. The ProDOS
BASIC command interpreter compresses all of the strings
together with the numeric variables and saves the resulting chunk
of memory as a VAR file. The first five bytes of the file constitute a
header which defines the memory image that follows:

VAR FILE HEADER

BYTE

OFFSET | LENGTH | DESCRIPTION

+0 (2 bytes) |Combined length of simple and array
variables.

+2 (2bytes) | Length of simple variables only.

+4 (1 byte) MSB of HIMEM when these variables
were STOREJ.

+5 (n bytes) |Startof memory image....

The AUX_TYPE field of the directory entry for the file contains
the starting address from which the compressed variables were
copied. EOF is an indication of the end of the image. When a
RESTORE is later issued, the memory image is reloaded, the
strings are separated from the rest of the variables, and, if neces-
sary, string pointers are adjusted based on the new HIMEM value.

The REL file type is used with a special form of binary file, con-
taining the memory image of a machine language program which
may be relocated anywhere in memory based upon additional
information stored with the image itself. Such a file is called a
Relocatable Object Module file and is produced as output from the
Apple Toolkit Assembler (EDASM). The format for this type of file
is given in the documentation accompanying the assembler.

A SYS, or system file, is just like a BIN file except that it nearly
always loads at $2000 and implies a reload of the command inter-
preter after it exits. SYS files are invoked with the “-”, or smart
RUN command, from the BASIC command interpreter. The inter-
preter closes all open files, frees all of the memory occupied by
itself, and does a standard BRUN at $2000.

|

i

4-26 Beneath Apple ProDOS

DIR FILES—PRODOS SUBDIRECTORIES

Since the Volume Directory has room for just 51 entries, without
subdirectories, you would be limited to 51 files per volume. This
may not seem to be much of a hardship on a diskette (although it
might, since DOS 3.3 allows 105), but on a hard disk with 5 million
bytes or more this limit is unthinkable. In order to create a more
dynamic and flexible structure, the user is permitted to create
subdirectories. A subdirectory can be thought of as an extension
to the Volume Directory, but there is more to it than that. In the
simplest case, a subdirectory is created and an entry which de-
scribes it is placed in the Volume Directory. The subdirectory has a
structure very similar to the Volume Directory: it has a header
entry located at its beginning; its blocks are doubly linked by point-
ers in the first four bytes of each block; and it can contain file
descriptive entries (including entries for “sub-subdirectories”).
Unlike the Volume Directory, however, it can be of any length (it
starts out with only a single block and more are added as
required), its header has a slightly different format, it can be
located anywhere on the diskette, and its blocks are not necessary
contiguous. A diagram of a typical subdirectory is shown in Figure
4.16. Thus, within a single subdirectory, you can create as many
file entries as you have disk blocks! In, practice, however, it is usu-
ally more convenient to create multiple subdirectories “dangling”
from the Volume Directory, each for a specific purpose (e.g. one for
word processing, one for program development, one for spread-
sheets, and so on). These subdirectories might even be thought of as
miniature “diskettes” within the larger volume. Although it is pos-
sible to set up very complex structures using subdirectories (mul-
tiple level tree-like networks), usually this is not very efficient or
convenient and a single level (all subdirectories linked directly to
the Volume Directory) works best.

One of the major concepts around which ProDOS was designed
is the notion of a path to a file. Ordinarily, if a file is described by
the Volume Directory, this path is very simple. ProDOS merely
looks up the file in the Volume Directory and that is that. If the file
is described by a subdirectory, however, ProDOS insists upon
knowing how to find the subdirectory. Of course, ProDOS could
systematically search all subdirectories for the file and all subdi-
rectories of the subdirectories, and so on, but this would be very
time consuming (especially if you had mistyped the file name and

m MMM MmwMmMMMMM W

m ™M mMm

m m

mmTmn

nnm

) b W W W W W W W

Vo VOO 1 O ST VTR ¥ I = I]

W &R

Ia!

1.

Volumes, Directories, and Files 4-27

BLOCK 2
DIRECTORY \

DIRECTORY \

OTHERFILES
OR
SUBDIRECTORIES

/1

Figure 416 AProDOS Subdirectory

it didn’t really exist!). Since the user usually knows which subdi-
rectory contains the file (and, perhaps, which subdirectory de-
scribes that subdirectory, ete.) the practice is to tell ProDOS what
path to follow to find a file. This is done by first specifying the
volume to be searched, thereby naming the Volume Directory, fol-
lowed by a list of all subdirectories which must be traversed to
eventually find the file, and finally by the file name itself. For
example, if in Figure 4.16 the volume name is “VOLUME” and the
subdirectory name is “SUB” and the file described by the subdi-
rectory is “FILE,” the path to find that file would be:

/VOLUME/SUB/FILE

If the file described by the Volume Directory in Figure 4.16 was
also called “FILE” there would be no confusion at all, because its
pathname would be unique:

/VOLUME/FILE

4-28 Beneath Apple ProDOS

This points out an additional advantage of subdirectories. It was
mentioned earlier that they were like miniature “diskettes,” and,
just like diskettes, there is no problem in using identical file names
within different directories.

To make specifying pathnames easier, the user can specify a
default prefix to ProDOS. When a file name is given (without a
leading “/” in its name) it is assumed to be an incomplete path-
name. To complete it, ProDOS merely attaches the prefix to the
beginning. Thus, if the current prefix is:

/VOLUME/SUB/

And a reference was made to “FILE,” ProDOS would create the
following fully qualified pathname:

/VOLUME/SUB/FILE

Therefore, by specifying a prefix you are, in a sense, stating that
you wish to work within a specific “miniature diskette,” although
you can still access any other file on the volume by giving its com-
plete pathname explicitly.

An example of a typical subdirectory block is given in Figure
4.17. The format of the Subdirectory Header is given below
(remember that the first four bytes of each subdirectory block con-
tain the previous and next block numbers respectively):

$04 STORAGE_TYPE/NAME_LENGTH: The first nibble
(top 4 bits) of this byte describes the type of entry. In this
case, this is a Subdirectory Header so this nibble is $E.
The low 4 bits are the length of the name in the next field
(the subdirectory name).

$05-$13 SUBDIR_NAME: A 15-byte field containing the name
of this subdirectory. The actual length is defined by
NAME_LENGTH above: the remainder of the field is
ignored.

$14 $14 must contain $75.

$15-$1B Reserved for future use.

$1C-$1F CREATION: The date and time of the creation of this
subdirectory. This field is zero if no date was assigned.
The format of the field is as follows:

BYTE 0 and 1 —yyyyyyymmmmddddd year/month/day
BYTE 2 and 3—000hhhhh0Ommmmmm hours/minutes

F]

@ W & @ W

p e AT AT TR TTTNNNEMN NN

e b e M —— o — i — i ——— o o o e - —_——— - -

)

il

@ @&

e B L

L'

k!

Volumes, Directories, and Files 4-29

Start of[SUBDIRECTORY HEADER

$E Indicates Subdirectory

Pointer Fields
(no other blocks)
8 Character DIR Name “SUBSTUFF" _ Creating/Minimum

ProDOS Versions

00 [00000000H rﬂs355425354554 Access: $C3=
Creation @C |46000000008000200[75485553 Fverrv .. DESTROY/ RENAME
Date/Time__ 18 544F4E2 awwa leeedcy27] 1. WRITE/READ Enabled

......

(not set)
$0D Entries per

Block 4 14
File Count
{1 File)
6C 00 0000000000
Parent DIR
Starts in Block 2 00000000000
(VOL DIR) 84 A00000000000GO0000000G0AT .
(Remainder ofBlock Zeroes)

Entry Length Is
$27 Bytes

...........

............

............

............

...........

Parent Entry #
(5th Entry

Describes This
Subdirectory)

For “AFILE”

Parent Entry Seedling

Length Is 27 Type =BIN
Bytgs Data Block = $114

EOF = $100

Full Access

AUX_TYPE = A$800

DIR Header in Block $113

Figure 417 Example Subdirectory Block

where each letter above represents one binary bit. This
is the standard form for all create and modify date/time
stamps in directories.

$20 VERSION: The ProDOS version number under which
this subdirectory was created. This field tells later ver-
sions of ProDOS not to expect to find any fields which
were defined by Apple after this version of ProDOS was
released. This field indicates the level of upward com-
patibility between versions. Under ProDOS 1.0, its
value is zero.

$21 MIN_VERSION: Minimum version of ProDOS which
can access this subdirectory. A value in this field implies
that significant changes were made to the field defini-
tions since prior versions of ProDOS were in use and
these older versions would not be able to successfully
interpret the structure of this subdirectory. This field
indicates the level of downward compatibility between
versions. Under ProDOS 1.0, its value is zero.

ey

4-30 Beneath Apple ProDOS

ACCESS: The bits in the flag byte define how the direc-
tory may be accessed. The bit assignments are as
follows:

$80 — Subdirectory may be destroyed (deleted)
$40 — Subdirectory may be renamed

$20 — Subdirectory has changed since last backup
$02 — Subdirectory may be written to

$01 — Subdirectory may be read

All other bits are reserved for future use.
ENTRY_LENGTH: Length of each entry in the Subdi-
rectory in bytes (usually $27).
ENTRIES_PER_BLOCK: Number of entries in each
block of the Subdirectory (usually $0D). Note that the
Subdirectory Header is considered to be an entry.
FILE_COUNT: Number of active entries in the Subdi-
rectory. An active entry is one which describes a file or
subdirectory which has not been deleted. This count does
not include the Subdirectory Header. Note that this
field’s name is a bit misleading since the count also
includes other subdirectory entries.
PARENT_POINTER: The block number of the key
(first) block of the directory which contains the entry
which describes this subdirectory.

PARENT_ENTRY: The entry number within the par-
ent directory which describes this subdirectory (the
parent directory’s header counts as zero). .
PARENT_ENTRY_LENGTH: The length of entries in
the parent directory in bytes (usually $27).

$22

$23

$24

$25-§26

$27-$28
$29

$2A

EMERGENCY REPAIRS

From time to time the information on a diskette can become
damaged or lost. This can create various symptoms, ranging from
mild side effects, such as the disk not booting, to major problems,
such as an input/output (I/0) error in the Volume Direc'_cory. A
good understanding of the format of a diskette, as described pre-
viously, and a few program tools can allow any reasonably sharp
Apple IT user to patch up most errors on his diskettes.

A first question would be, “how do errors occur?” The most
common cause of an error is a worn or physically damaged
diskette. Usually a diskette will warn you that it is wearing out by

m oMM MmMM™MMM T WO

m mT mm

rFrrEprEOAEAETE]

e Ll

mmmmw

LT m

[}

_n

J

d W W @ @ w W

ST FF

= e

W R

L

e

-

Volumes, Directories, and Files 4-31

EMERGENCY REPAIRS ARE EASIER \F YOU HAVE A BACKUP

producing “soft errors.” Soft errors are I/0 errors which occur
randomly. You may get an I/O error message when you CATALOG
a disk one time and have it CATALOG correctly if you try again.
When this happens, the smart programmer immediately copies
the files on the aged diskette to a brand new one and discards the
old one or keeps it as a backup.

Another cause of damaged diskettes is the practice of hitting the
RESET key to abort the execution of a program which is accessing
the diskette. Damage will usually occur when the RESET signal .
comes just as data is being written onto the disk. Powering the -
machine off just as data is being written to the disk is also a sure
way to clobber a diskette. Of course, real hardware problems in the
disk drive, cable, or controller card can cause damage as well.

If the damaged diskette can be CATALOGed, recovery is much
easier. A damaged ProDOS bootstrap loader on track 0 can usually
be corrected by formatting a fresh diskette and copying the files
from the old one to the new one. If only one file produces an I/O
ERROR when it is used, it may be possible to copy most of the sec-
tors of the file to another diskette by skipping over the bad sector
with an assembler language program which calls the MLI
(Machine Language Interface) in the ProDOS Kernel, or with a
BASIC program (if the file is a TXT file). Indeed, if .the problem is
a bad checksum (see Chapter 3), it may be possible to read the bad
sector and ignore the error and get most of the data.

4-32 Beneath Apple ProDOS

An I/O error usually means that one of two conditions ha§
occurred. Either a bad checksum was detected on the data in a sec-
tor, meaning that all bytes in the sector which follow the point of
damage may be lost; or the sectoring is clobbered suc_h that the sec-
tor no longer even exists on the diskette. If the latter is the case, the
diskette (or at the very least, the track) must be reformatted,
resulting in a massive loss of data. Although a program can be
written to format a single track (see APPENDIX A), 1’; is usually
easier to copy all readable sectors from the damaged diskette to
another formatted diskette and then reconstruct the lost data

there.

Disk utilities, such as Quality Software’s Bag of Tricks, allow the
user to read and display the contents of sectors or blocks. Bag of
Tricks will also allow you to modify the sector data and rewrite it to
the same or another diskette. If you do not have Bag of Tricks or
another commercial disk utility, you can use the ZAP program in
APPENDIX A of this book. The ZAP program will read any b1'0(:k
of an unprotected disk into memory, allowing the user to examine
it or modify the data and then, optionally, rewrite it ’Fo a disk.
Using such a program is very important when learning about
diskette formats and when fixing clobbered data.

Using ZAP, a bad sector within a file can be localized by readin.g
each block listed in the index blocks for that file. If the bad block is
in a directory, the pointers of up to 13 files may be lost. When
this occurs, a search of the diskette can be made to find “homeless’
index blocks (ones which are not otherwise connected to the:
remaining good directory blocks in that and other directories). As
these index blocks are found, new file descriptive entries can be
made in the damaged sector which point to these blocks.OOf course,
it helps to know whether the lost files are seedlings, saplings or
trees! When the entire Volume Directory is lost, this process can
take hours, even with a good understanding of the format of Pro-
DOS volumes. Such an endeavor should only be undertaken if .
there is no other way to recover the data. Of course, the best pollcy
is to create backup copies of important files periodically to sim-
plify recovery. More information on the above procedures is given
in APPENDIX A.

A less significant but very annoying form of diskette c}ok?ber Is
the loss of free blocks. It is possible, by powering off or hlt'tmg
RESET at the wrong time, to leave blocks marked in use in the
Volume Bit Map which were about to be marked free. These lost

¢]

MMM TN NN T N

T M

mrTTmm
N

(o

nm

(!

|

ld

& W W W & @l

(a

| lal

=) 1= s

L=

Volumes, Directories, and Files 4-33

blocks can never be recovered by normal means, even when files
are deleted, since they do not belong to anyone. The result is a
DISK FULL message before the volume is actually full. To reclaim
the lost block, it is necessary to compare every block listed in every
index block or directory against the Volume Bit Map to see if there
are any discrepancies. There are utility programs which will do
this automatically, but the best way to solve this problem is to copy
all the files on the diskette to another diskette (note that the
diskette must be copied on a file by file basis, not as a volume, since
a volume copy would copy an image of the diskette, bad Volume Bit
Map and all).

If a file is deleted it can usually be recovered, providing that
additional block allocations have not occurred since it was deleted.
If another file was created after the DELETE command, ProDOS
probably has reused some or all of the blocks of the old file. The
appropriate directory can be quickly ZAPped to reactivate the file
(you will have to guess at the STORAGE_TYPE and
NAME_LENGTH values) at +0 in the deleted entry. The file
should then be copied to another disk and then the original deleted
so that the Volume Bit Map will be correct.

FRAGMENTATION

ProDOS overhead in reading or writing blocks to a volume con-
sists of three main parts:

1. ProDOS computational overhead time (the time to get ready to
access the disk).

2. Seek time (moving the disk arm to the proper track).

3. Rotational delay (waiting for the proper sector to appear under
the disk head).

In the first respect, ProDOS is an enormous improvement over
Apple’s earlier operating system, DOS, being up to eight times
faster in its operation. This fact only increases the significance of
the other two delay areas. Skewing can have an effect on rotational
delay to some extent (see Chapter 3), but is much more difficult to
control. Seek time, however, can vary greatly depending upon use
patterns and the arrangement of files on a volume.

Imagine, for example, a volume on which a great deal of activity
has occurred. Many files have been created and deleted over a
period of time, leaving “holes” here and there as files are deleted,

4-34 Beneath Apple ProDOS

which are reallocated to existing or new files as necessary. Even-
tually, a map of the volume looks like a plate of spaghetti! There is
nothing really wrong with this — files can be accessed normally —
but if parts of an otherwise short file are spread all over the disk
volume, ProDOS must spend a lot of time moving the disk read/
write head from track to track to pick up all the pieces in the
proper order. This costs time. A disk volume in this state of affairs
is said to be badly “fragmented.” Fragmentation can be even more
important on a hard disk since the ratio of seek delay to rotational
delay is much greater. Likewise, the best skewing setup in the
world can be completely gutted by a fragmented disk, since few
sequential file sectors are found together on the same track, and as
the arm is moved to a new track there is no telling how long the
rotational delay will be.

When disk access time becomes a concern, it is sometimes useful
to intelligently move files to specific spots on the disk. To accom-
plish this, the user must format a new, blank volume and copy the
files from the old disk, one by one, to the new disk in an appro-
priate order. Remember that ProDOS allocates blocks for files in
numerically increasing order (from the outside track of the disk to
the inside track). Thus, the first file you copy will be placed near
the Volume Directory (a good place to be if you want to find that
file fast). The last file you copy will go closest to the center hub of
the diskette. If your program accesses two files at once, try to place
them near one another on the disk. Do not separate them by many

other files or you will hear the disk arm “thrashing” back and forth-

as it first accesses a block in file A and then must access one in file
B. While you hear that noise, your program is not doing anything
useful! Another thing to remember if your program opens and
closes files frequently is that, when it does so, it may access several
directories. It is usually a good idea in any case to keep all of your
directories squashed down against the Volume Directory (i.e.
CREATE all directories before you copy any files onto the new

diskette) so that pathname searches will go faster.
N\

|

TATTTTMTMAMOD N ON NN

B @ @@ W W @ @ w

Wk b W @

le

e & Ik

(e

(el

CHAPTER 5

THE STRUCTURE OF PRODOS

ProDOS MEMORY USE

ProDOS is an assembly language program which is loaded into
RAM memory when the user boots his disk. Although the ProDOS
machine language support routines can run by themselves in a
machine smaller than 64K (or 48K plus a language card), ProDOS
is primarily intended to run only on a full sized 64K or larger
Apple II Plus or an Apple IIe or Ilc. In a 64K Apple I1, ProDOS
normally occupies the 16K of bank switched memory (or the
Language Card for older Apples) and about 10.5K at the top of
main memory ($9600 through $BFFF). The part of ProDOS which
occupies the bank switched memory is called the Kernel. The part
occupying the top of main memory is called the BASIC
Interpreter (BI). The Kernel consists of support subroutines
which may be called by any assembly language program (such as
the BASIC Interpreter) to access the disk, either block by block or
file by file. The BASIC Interpreter accepts ProDOS commands
entered by the user or his programs, and translates them into calls
to the Kernel subroutines.* When the BASIC Interpreter is loaded,
ProDOS must fool Applesoft BASIC into believing that there is

*It is possible, if the BASIC Interpreter’s functions are not required by an
application (such as a stand alone arcade-type game), to separate the Kernel from
the BASIC Interpreter and not even load the BASIC Interpreter. For the purposes
of this discussion, however, we will assume that ProDOS consists of both the Kernel
and the BASIC Interpreter. In addition, the ProDOS Kernel may be loaded into the
main part of memory if the Apple does not have a language card (48K Apple II), but
the BASIC Interpreter may not be used under these circumstances because it
cannot be relocated.

5-2 Beneath Apple ProDOS

actually less RAM memory in the machine than there is. With
ProDOS loaded, Applesoft believes that there is only about 38K of
RAM. ProDOS does this by adjusting HIMEM after it has loaded
the BASIC Interpreter to prevent Applesoft from using the
memory ProDOS is occupying. In order to keep track of the
memory it is using, ProDOS maintains a “bit map” table which
describes every page (256 bytes) in memory and marks it either
free or in-use. By examining this table, user written programs can
avoid using previously assigned memory, even if later versions of
ProDOS are loaded elsewhere.

A diagram of ProDOS’s memory is given in Figure 5.1. As can
be seen, there are numerous subdivisions of the two basic
components mentioned above. In addition, there are two special
global pages containing addresses and data pertaining to the
ProDOS Kernel (SYSTEM GLOBAL PAGE at $BF00) and the
BASIC Interpreter (B GLOBAL PAGE at $BE00) which may be
of interest to external user written programs. These global pages
will be discussed in more detail later in this chapter.

/8 A A A (O A S S N UL ANNY MY LY NI LN DN AL AN AN AN AL VI U

|

i

@ il i L

i

P Y B B 1 B = B 1Y B ¥

R P VI

L)

The Structure of ProDOS 5-3

$FFFF

$F800

$F000SF 100

$E000

$D000

$C000

$B000

$A000

$9A00

$9600 freeer

$9000

$F142: CLOCK

. BASIC PROGRAMS o

DEVICE DRIVERS ~ $FF00: /RAM DRIVE
$F800: DISKETTE
KERNEL SCRATCH SPACE
|
Language Card
Applesoftin
ProDOS KERNEL Motherboard
ROMs
MACHINE LANGUAGE INTERFACE
(MLD
System Global
Page ($BF00)
~ Bl Global Page
($BEQO)
ProDOS
BASIC INTERPRETER
(BI)
Open File
Buffers Are
Inserted Here
GENERAL PURPOSE BUFFER
X OB Ao < HIMEM
| AVAILABLERAM &

Figure 5.4 ProDOS Memory Usage (64K)

5-4 Beneath Apple ProDOS

As discussed earlier, ProDOS can be divided into two major
components: the Kernel, containing the Machine Language
Interface (MLI); and the BASIC Interpreter (BI). In_t_heory, other
interpreters could be written and substituted for the BI (to support
Pascal or C language development, for example) but at present the
only interpreter provided by Apple is the BASIC Interpreter,
supporting Applesoft BASIC. There is currently no support for the
older Integer BASIC language. In fact, because of the memory
utilization of ProDOS, Applesoft must be resident in ROM (since
the Kernel resides in the language card). Hence, ProDOS is only
supported for Apple II Pluses, IIc’s, and I1e’s. Use of the term
“BASIC Interpreter” should not be confused with the Applesoft
BASIC Interpreter in ROM.* Here, “interpreter” means
“interpreter of disk access commands,” and not “interpreter of

BASIC language statements.” Although the Bl is closely
“married” to the Applesoft interpreter in ROM, its primary
responsibility is to interpret ProDOS commands whigh logd and
save files, display directories, and support file operations in

BASIC programs.

The BI normally occupies memory from $9600 to SBEFF. ‘The
first 1K ($9600-$9A00) is a general purpose buffer, used during
Applesoft string garbage collection and for other purposes.
Following this, at $9A00, are the actual machine language
instructions and work areas of the BI. Any data which is
considered to be of interest to external programs is placed in the
BI Global Page at $BE00. As files are opened by BASIC programs,
1024-byte file buffers are allocated and inserted between the
general purpose buffer and the Bl itself. To do this, the BI must
relocate the general purpose buffer and any strings which were
allocated by the running BASIC program lower in memory to
make room for the file buffers. HIMEM must be lowered
accordingly. Thus, the memory available to the BASIC program
fluctuates according to the number of open files.

The ProDOS Kernel occupies 12K of the 16K bank switqhed
memory (language card). Most of the remaining 4K bank is not
currently used, but is reserved by Apple for future use (the QUIT
code occupies three pages currently). The main part of the ProDOS

*Apple’s documentation also refers to the BASIC Interpreter as the “BASIC
System Program.” “BASIC Interpreter” is used here because of frequent
references to the “Bl,” an earlier designation.

/A

i W W W W

lw) (& L

) W & oW &

s
-

Ll

e

The Structure of ProDOS 5-5

Kernel begins at $D000, and contains the Machine Language
Interface (MLI) subroutines which allow access to the disk by
other programs (such as the Bl or user written machine language
programs). MLI functions provided include: open a file, create a
new file, delete a file, rename a file, determine online volumes,
read/write to a file, etc. The Kernel also handles interrupts for
devices which can generate them. Access to these subroutines and
their data is strictly controlled by the System Global Page which
will be described next. Following the Kernel and its seratch space
(work areas), is a 2K area devoted to device drivers. In order to
provide a device independent interface to peripherals, subroutines
are loaded here which can perform block oriented 1/0 to the Apple
diskette drive, the /RAM “electronic” 64K memory diskette drive
implemented in the Extended 80-Column Text card, and the

Thunderelock. Additional device drivers (Hard disk, printer, etc.)

~ must be placed in interface card ROM or in main RAM memory.

The entry point addresses of each device driver in use are kept in
the System Global Page.

GLOBAL PAGES

The System and BI Global Pages are maintained by ProDOS at
fixed locations in main memory ($BF00 and $BE00 respectively).
This practice allows important ProDOS data and subroutines to be
accessed by external programs via a fixed location. Each time
Apple makes a change in ProDOS and reassembles its source code,
the addresses of all of the subroutines and variables may change.
By putting the addresses of these routines and the variables
themselves in fixed locations in memory, dependencies by a user
written program on a particular version of ProDOS can be
eliminated. Hopefully, all subroutines or data of general interest
have been “vectored” through these global pages. If not, the
programmer cannot be sure that a subroutine he calls directly will
not “move out from under him” in a later version.

The exact format of the System Global Page is given in Chapter
8 but it contains the following information:

1. JMP (Goto) instructions to the main entry of the MLI, a quit
vector, a clock/calendar subroutine, ete.

2. Addresses of the device drivers for each slot and drive.

3. Alist of all disk drives online, and the slot and drive each
occupies.

5-6

Beneath Apple ProDOS

o o

00 =3

10.
11.

12

The BI global page contains:
1.

. I/O vectors for PR# and IN# for

. Default slot and drive.
. Bl status flags indicating whether

A “bit map” showing which pages of memory are in use and

which are free.

Addresses of the buffers being used by MLI opened files.
Addresses of up to four interrupt handling routines and
associated register save areas.

. Current date, time and file level.
. A machine ID flag byte giving the model (e.g. Apple Ile) and

memory in the machine on which ProDOS is currently
running.

. Various flags indicating MLI status and whether a card

occupies any slot.

Language card bank switching routines.
Interrupt entry and exit routines.
ProDOS version number.

Addresses of routines in the Bl
which allow warmstart, command
scanning, and error message
printing.

each slot, and the currently active
input and output streams.

an EXEC file is active, a BASIC
program is running, a file is being
read or written, etc.

. Parameters that allow a user to

pass an external command line to the BL.

. A table indicating which commands allow which keyword

parameters (e.g. OPEN does not allow the AD keyword but
does allow the L keyword).

. The current value for all keywords (A,B,E,L,S,D.ete.).
. The address of the pathname buffers within the BL.
. A subroutine used by the BI to access the MLI.

CO B A\ R A

mmTmmnw

/A |

1

.
] J

(i

P

W W oW

W & e

iil

[
Iom

{

A

The Structure of ProDQOS 5-7

10. Parameter lists used by the BI to access the MLI. |
11. Vectors to the BI's buffer allocate and free subroutines.
12. The current HIMEM MSB.

In addition to the ProDOS vectors in the global pages, the
Monitor ROM and Applesoft maintain additional vectors of
general interest from $3F0 through $3FF. They are:

$3F2

$3F4

$3F5

$3F8
$3FB
$3FE

LO/HI address of the routine which handles a BRK.
machine language instruction. Supported by the Autostart
and Apple Ile and IIe ROMs. Normally contains the
address of a Monitor ROM routine which prints the
contents of the registers.

LO/HI address of routine which will handle RESET for
Autostart and Apple IIe ROM. Normally the BI restart
address ($BE00) is stored here, but the user may change it
if he wishes to handle RESET himself.

Power-up byte. Contains a “funny complement” of the
RESET address with an $A5. This scheme is used to
determine if the machine was just powered up or if
RESET was pressed. If a power-up occurred, the
Autostart ROM or Apple ITe ROM ignores the address at
$3F2 (since it has never been initialized), and attempts to
boot a diskette. To prevent this from happening when you
change $3F2 to handle your own RESETs, EOR (exclusive
OR) the new value at $3F3 with an $A5 and store the result
in the power-up byte.

A JMP to a machine language routine which is to be called
when the “&” feature is used in Applesoft. Initialized by
ProDOS to point to the BI command scanner vector.

A JMP to a machine language routine which is to be called
when a control-Y is entered from the monitor.

A JMP to a machine language routine which is to be called
when a non-maskable interrupt (NMI) occurs.

LO/HI address of ProDOS’s IRQ maskable interrupt
handler dispatcher. If you wish to handle an IRQ interrupt,
install an interrupt handler into ProDOS—do not replace

this vector.

5-8 Beneath Apple ProDOS

WHAT HAPPENS DURING BOOTING

When an Apple is powered on, its memory is essentially devoid of
any programs. In order to get ProDOS running, a diskette is
“booted.” The term “boot” refers to the process of bootstrap loading
ProDOS into RAM. Bootstrap loading involves a series of steps
which load successively bigger pieces of a program until all of the
program is in memory and running. In the case of ProDOS,
bootstrapping occurs in two major stages, corresponding to the
loading of the ProDOS Kernel and the BASIC Interpreter. Within
these major stages, there are minor stages which must be
- performed to complete the loading process. Figures 5.2 and 5.3
. diagram the processes involved in loading the Kernel and the BI
respectively from the diskette. A description of this process
follows.

The first boot stage is the execution of the ROM on the disk
controller card. This is called the Boot ROM, and it exists on
either the diskette controller card or a-hard disk controller card at

B S
| 3
£

Ei:i

Eii

Ej;i

o

A

| TR

& 3

| I

B3

e

B3

TR

B3

kil
| TRINT

Ba. oa
e Ta
| TR
ke G
hx
=

The Structure of ProDOS 5-9

$Cs00 (where “s” is the slot number). Thus, when the Apple is first
powered on, the Monitor ROM searches the slots for a disk
controller card (starting with slot 7 and moving down in slot
number) and, upon finding one, it branches to $Cs00 (usually
$C600 if the controller is in slot 6). Control is also passed to this
address should the user type PR#6 in BASIC or C600G or 6(ctr])P
in the monitor. The diskette controller Boot ROM is a machine
language program of about 256 bytes in length. When executed, it
“recalibrates” the diskette arm by pulling it back to track 0 (the
“clacketty-clack” noise that is heard), and then reads sector 0 from
track 0 into RAM memory at location $800. Once this sector has
been read, the Boot ROM jumps (GOTO’s) to $801 which is the
second stage boot, the ProDOS Loader.

The ProDOS Loader occupies the first block on a ProDOS
diskette (physical sectors 0 and 2). Since the Boot ROM has only
loaded sector 0, the first task the ProDOS Loader must perform is
to load the remaining sector of itself. It does this by calling the
Boot ROM as a subroutine, loading it at $900. Having completed
this, a portion of the Boot ROM is copied into a subroutine in the
ProDOS Loader itself (this variable code is different for a diskette
or a hard disk), and uses this to search the diskette’s Volume
Directory for a system file with the name “PRODOS”. This file
contains an image of the ProDOS Relocator, the BI Loader, and the
ProDOS Kernel itself. If the file can be found, its contents are read
into memory at $2000, and the ProDOS Loader jumps to the
ProDOS Relocator at $2000.

The ProDOS Relocator prints a copyright and version number
on the sereen, and then begins to examine the machine in use to
find out its model. This is done by testing the Monitor ROM for
special model-dependent indicators and by checking for language
card memory. The ProDOS Relocator assembles the data it has
collected into a byte of flags indicating whether the machine is an
AppleII, Apple II Plus, Apple Ile, Apple Ilc, or an Apple Il in
Apple II emulation mode. It also indicates the amount of memory
available. Once this has been established, the Kernel image is
copied either to the bank switched memory (language card) if the
machine has 64K or more, or to $9000 for a 48K Apple. If the
machine has 128K, a /RAM drive is set up in the alternate 64K
memory. The peripheral card configuration is also checked, and a
table of occupied slots and interface card identifications is made.

o

5-40 Beneath Apple ProDOS

$FFFF
‘ I $FO00
RELOCATED
ProD0S i
KERNEL $E000
N
$D000
170
/1/W Boot ROM —» iem——- $ C600
System Global Page —* = RAAW RRARANW %g‘;‘o’g
=
—
i
i T T $5C00
| MR ; /
b= N n NAS e e~ R
£\ —— ProDOSIMAGE — |1 .
w i
1)
(=3
3
a
B T B $2D00
—
— ProD0S RELOCATOR
BLOCK BUFFER 8l Loader
Copied To $800
BLOCK BUFFER
Block 0 —— ProDOS LOADER ———* $0800
DISKETTE $0000
MEMORY

Figure 5.2 ProDOS Kernel Bootstrap Process

The initialization of the Kernel is completed by moving an image
of the System Global Page to $BF00 and initializing it as
necessary. The BI Loader image is then copied to $800 and control
transfers there to begin booting the BI.

The BI Loader searches the Volume Directory for the first
system file it can find whose name ends with “.SYSTEM”. The file
which is found will normally be BASIC.SYSTEM, but any other
interpreter could be loaded in this way. If a file is found, its
contents are loaded into memory at $2000 and control passes to the
BI Relocator at $2000.

wmmmj

m m M W m

m mmmmm

m m m

T

n
il

Al

!
|
L

FTRFTRPT

T FYR T

VRV R VY B V5 VS B =Y

fmi

=l

19

il

i

The Structure of ProDOS 5-11

$FFFF
$F000
VLA
Coomy ProDUS e]
S KERNEL, > $£000
S $D000
1/0
M\ Boot ROM —> N . -
System Global Page —- IS * $C000
/ L g BFOO
Bl Global Page 7.,) $BEOO
7/ RELOCATED | A
B
“CERERAL PURPOSE BUFFER] oA
$9600
T =L
“:“ | i e $4A00
B Ll : ! ;
E “ “ ! : . !
g [Rns RN
%4 i BIIMAGE —— R
! Tl Rl ‘
e “ ! AN
w . i ‘ !
3 i S o
; i : ‘HJ _______________ dLabhalbaddbnbksdenned $2400
\ - TTTTBIRELOCATOR % $2000
BLOCK BUFFER 23%%%
BI LOADER
$0800
DISKETTE MEMORY

Figure 5.3 Basic Interpreter (Bl) Bootstrap Process

The BI Relocator copies the BI image to high memory ($9A00),
sets up the BI Global Page at $BE00, and marks the pages
occupied by these as “in-use” in the System Global Page’s memory
bit map. The screen and keyboard vectors in zero page (CSWL/H
and KSWL/H) are modified to cause immediate transfer of control
to the relocator, and a jump to BASIC’s coldstart entry is executed.
As soon as Applesoft has completed initialization, it prints a
prompt character “]”. This causes control to transfer back into the
BI Relocator. CSWL/H and KSWL/H are restored to their normal
settings, and initialization of the BI Global Page is completed. Ifa

5-12 Beneo’rh Apple ProDOS

“STARTUP” file can be found in the Volume Directory, an initjal
command line of ““STARTUP” is dummied up and, after
completing the vectors in page 3 ($3F0 etc.), control transfers to
the BI through its vector at $BE0O0.

The various stages of the boot process are covered again in
greater detail in the ProDOS Program Logic Supplement—see
Chapter 8 for details.

-

—

— -

FA M MMM MMM MM N ENTN NN

L

mwmm

n

W G W

lij

T}

wal &

=

il

=) i

L

izl izl

il

CHAPTER 6

USING ProDOS FROM
ASSEMBLY LANGUAGE

CAVEAT

This chapter is aimed at the advanced assembly language
programmer who wishes to access the disk at any level. Access to
the disk by BASIC programs is well documented in the ProDOS
manual, BASIC Programming With ProDOS. The material
presented in this chapter may be beyond the comprehension (at
least for the present) of a programmer who has never used
assembly language.

Access to a diskette from assembly language may be
accomplished at four different levels:

Level 0 Direct access of the diskette controller
Level 1 Block access

Level 2 Machine Language Interface (MLI) access
Level 3 BI command access

At the lowest level is direct access of the diskette controller.
Here, data is accessed byte by byte. This may be required to
implement diskette protection schemes or to perform low level
diagnostic or correction of I/0 errors. The next level of access is by
ProDOS blocks (two sectors per block). This is dene using the ap-
propriate ProDOS device driver; in this case, the diskette device
driver. At a higher level still is the ProDOS Machine Language
Interface (MLI). Here, data may be accessed on a file basis.

6-2 Beneath Apple ProDOS

|

Finally, the highest level of access is through the ProDOS BASIC
Interpreter. Here, entire ProDOS command lines may be executead
to produce formatted directory listings and the like. A detailed

ut:b(,'l lphlUIl Ul Ule progr au‘uumg LUIlblUCI dLlUIlb at EdLIl Ul Lflebe

levels follows.

DIRECT USE OF THE DISKETTE DRIVE

It is often desirable or necessary to access the Apple’s disk drives
directly from assembly language, without the use of ProDOS.
Applications which might use direct disk access range from a user
written operating system to ProDOS- independent utility
programs.Direct access is acomplished using 16 addresses that

provide eight on/off switches which directly control the hardware.
For information on the disk hardware, please refer to

TIANTI\T

APPENDIX D. The device address assignments are given in

Table 6.1.

TABLE 6.1 ProDOS Hardware Addresses

e e e -~ —— e . H8 o)

“OFF” SWITCHES

“ON” SWITCHES

BASE
SWITCH | ADDRESS|FUNCTION

BASE
ADDRESS|FUNCTION

QO $C080 Phase 0 off
Q1 $C082 Phase 1 off
Q2 $C084 Phase 2 off
Q3 3$C086 Phase 3 off
Q4 $C088 Drive off

Q5 $CO8A Select drive 1
Q6 $C08C Shift data
register

Q7 $COSE Read

$CO81 Phase O on
$C083 Phase 1 0on
$C085 Phase 2 on
$C087 Phase 3on
$C089 Drive on
$C08B Select drive 2
$C08D Load data
register
Write

$CO8F

The last two switches are difficult to explain in single phrase
definitions because they interact with each other forming a 4-way
switch. The four possible settings are given in Table 6.2.

AR A B B R B B O (A G A\

i W W W

U) L W

lm tml lml (= bm)) () lm

(il

T

"

Using ProDOS from Assembly Language 6-3

TABLE 6 2 Four Way Q6/Q7 Switches

Q6 |1 Q7 | FUNCTION

Off | Off | Enable read sequencing.

Off [On | Shift data register every four cycles
while writing.

On | Off | Check write protect and initialize

sequencer for writing.
On On TQQH data rndlefor avorv four o cveles

S RV L ASVL TYTLy tvul Uy

while wrltmg

The addresses are slot dependent and the offsets are computed
by multiplying the slot number by 16. In hexadecimal this works
out nicely. Simply add the value $s0 (where s is the slot number) to
the base address. To engage disk drive number 1 in slot number 6,
for example, we would add $60 to $CO8A (device address
assignment for engaging drive 1) for a result of $COEA. However,
since it is generally desirable to write code that is not slot
dependent, one would normally use $CO8A, X (where the X-
register contains the value $s0). Table 6.3 shows the range of
addresses for each slot number.

TABLE 6.3 Address Ranges For Slots

SLOT
NUMBER

ADDRESS
RANGE

$C080—$CO8F

$C090—$CO9F

$COA0—$COAF
$COB0—$COBF
$COCO—$COCF
$COD0—$CODF
$COE0—$COEF
$COF0—S$COFF

NSO WN -=O

6-4 Beneath Apple ProDOS

In general, the above addresses need only be accessed with any
valid 6502 instruction. However, in the case of reading and writing
bytes (last four addresses), care must be taken to insure that the
data will be in an appropriate register. All of the following would
engage drive number 1. (Assume slot number 6.)

BIT S$SCOEA
LDA $C@8A,X
CMP $CO8A,X

(where X-register contains $60)
(where X-register contains $68)

Below are typical examples demonstrating the use of the device
address assignments. For more examples, see APPENDIX A. All
examples assume that the label SLOT is set to 16 times the desired
slot number (e.g. $60 for slot 6).

STEPPER PHASE OFF OR ON

Basically, each of the four phases (0-3) must be turned on and
then off again. Done in ascending order moves the arm inward. In
descending order, the arm moves outward. For optimum
performance, the timing between accesses to these locations is
critical, making this a nontrivial exercise. An example is provided
in APPENDIX A demonstrating how to move the arm to a given
location.

MOTOR OFF OR ON

Put slot number times 16 in X-register.
Turn motor off.

LDX #SLOT
LDA $C@88,X

Put slot number times 16 in X-register.
Turn motor on (selected drive).

LDX #SLOT
LDA $C@89,X

NOTE: A sufficient delay should be provided to allow the motor
time to come up to speed before reading or writing to the
disk. Either a specific delay or a routine that watches the
data register can be used. See APPENDIX A for an
example.

1

TR A A T A U A\
Pl

e e . — —— it

YRR TR =]

{m/

(ml lml el im)

Iml

- lil

T

™

I

Using ProDOS from Assembly Language 6-5

ENGAGE DRIVE 1 OR 2

LDX #SLOT
LDA $C@8A,X

Put slot number times 16 in X-register.
Engage drive 1.

LDX #SLOT
LDA $C@8B,X

Put slot number times 16 in X-register.
Engage drive 2.

READ A BYTE

LDX #SLOT
LDA $C@8E,X

Put slot number times 16 in X-register.
Insure Read mode.

READ LDA $C@8C,X Put contents of data register in Accumulator.
BPL READ Loop until the high bit is set.
NOTE: $CO8E,X must be accessed to assure Read mode. The

loop is necessary to assure that the accumulator will
contain valid data. If the data register does not yet
contain valid data, the high bit will be zero.

SENSE WRITE PROTECT

LDX #SLOT
LDA $C@8D,X
LDA $CO8E,X

Put slot number times 16 in X-register.

Sense write protect.

BMI ERROR If high bit set, protected.

WRITE LOAD AND WRITE A BYTE
LDX #SLOT Put slot number times 16 in X-register.
LDA DATA Load Accumulator with byte to write.

Write load.
Write byte.

STA $C@8D,X
ORA $C@8C,X

NOTE: $CO8F,X must already have been accessed to insure
Write mode and a 100-microsecond delay should be
invoked before writing.

6-6 Beneath Apple ProDOS

Due to hardware constraints, normal data bytes must be written
in 32-cycle loops. The example below writes the two bytes $D5 and
$AA to the disk. It does this by an immediate load of the
accumulator, followed by a subroutine call (WRITE9) that writes
the byte in the accumulator. Timing is so critical that different
routines may be necessary, depending on how the data is to be
accessed, and code cannot cross memory page boundaries without
an adjustment.

LDA #$D5 Load byte to write. (2 cycles)

JSR WRITES Go write it. (6)

LDA #$AA Load byte to write. (2)

JSR WRITE9 Go write it. (6)
WRITE9 CLC Provide different (2)
WRITE7 PHA delays to produce (3)

PLA correct timing. (4)
WRITE STA $C@8D,X Store byte in register. (5)

ORA $C@8C,X Write byte. (4)

RTS Return to caller. (6)

CALLING A STORAGE DEVICE DRIVER (BLOCK ACCESS)

ProDOS is device independent in that it requires a device
driver for all storage devices. ProDOS comes with two device
drivers built in. One supports the standard Apple floppy disk
drive (Disk II or equivalent). The other supports a RAM drive on
the Apple IIc or an Apple Ile that has 128K of memory. ProDOS
can also support the ProFile hard disk which has its device driver
on ROM. It seems clear that there will be many kinds of storage
devices available in the future, each with its own driver.

These device drivers are used as subroutines by the MLI and
provide the means of accessing the appropriate device. Four basic
functions are currently defined for a device driver. They are
STATUS, READ, WRITE, and FORMAT. However, not all
device drivers will provide all four functions. The Disk II Device
Driver, for example, does not support FORMAT; because of space
constraints, this function is provided in the program named
FILER.

The READ BLOCK and WRITE BLOCK calls in the MLI
provide the only means of using a device driver from ProDOS and
is the preferred method. While it is not generally recommended,
any device driver can be called directly. This could prove useful
in particular applications that don’t require the MLI. Great care
should be taken when calling the device driver directly because
doing so can easily destroy data on the particular storage device.

|

F

W W W W W W W W

LK EE,

m

mmm

m m m

m

AN ERRN

lm)

i) lm

lm! lm!

{im!

-

T T R P R P AT

-
cel

Using ProDOS from Assembly Language 6-7

While the parameters to call a device driver are quite
straightforward, there are several potential difficulties to
consider. First, RAM based device drivers normally reside in
bank-switched memory, and therefore must be carefully selected
and deselected. Second, a request for an unsupported device
funection may produce undesirable results.

There are four inputs stored in six zero page locations that
must contain the appropriate information when a call is made to
a device driver. The first input is the Command Code, which
indicates which operation is requested. As mentioned earlier, four
operations are currently defined. The first of these is STATUS,
which is used to determine if the device is ready to be accessed
(either Read or Write). Although not all device drivers do so, it is
suggested that the number of blocks the device supports be
returned, in additon to the status. This should be done using the X
(low byte) and Y (high byte) registers. The remaining operations
are quite straightforward—READ for reading a block, WRITE
for writing a block, and FORMAT to format or initialize the
media.

The second input is the Unit Number, indicating in which slot
and drive the desired device resides. Only two drives per slot are
supported directly, but it is possible to interface a controller card
that supports additional drives or volumes.

The third input is a 2-byte Buffer Pointer that indicates the
location of a 512-byte area for data transfer. The MLI verifies
that no memory conflicts exist, but most device drivers will not do
so; therefore, some degree of care should be exercised in
determining this input.

The fourth input is a 2-byte Block Number indicating which
block is to be used for data transfer. The value should be in
keeping with the number of blocks available on the desired
device.

The four inputs necessary are listed in Table 6.4.

Although Apple has defined the manner in which device
drivers are to be called, some variations will occur. Even the
drivers provided by Apple vary slightly from one another. For
this reason it is advisable to make calls to any device driver with
great caution. The parameter list descriptions that follow detail
the four kinds of calls that are available. Not all device drivers
will support all four call types and a request to an unsupported
call type could prove dangerous.

6-8 Beneath Apple ProDOS

Table 64 Device Driver Para

meters—General Format

LOCATION | DESCRIPTION [OPTIONS
$42 | Command code |$00 = STATUS
$01 = READ
$02 = WRITE
$03 = FORMAT
$43 | Unit Number DSSS0000
D = Drive number (0 =drive 1,
1=drive 2); SSS=Slot number
(0to7)
$44-45 | 1/0 Buffer Can be $0000 to $FFFF
$46-47 | Block Number Can be $0000 to SFFFF

Return code

The processor CARRY flag is
set upon return from the device
driver if an error occurred.
The ACCUMULATOR
contains the return code.

$00 = Noerrors

$27 =1/Oerror

$28 = Nodevice connected
$2B = Write protect error

CALLING THE DISK Il DEVICE DRIVER

Access to standard Apple floppy
lent) is performed using the Disk I
ProDOS. As mentioned above, the
support the FORMAT call. If such

disk drives (Disk II or equiva-
I Device Driver provided with
Disk II Device Driver does not
a request is made, it will be

interpreted as a WRITE call, and serious problems may result.
Formatting floppy disks is performed by the separate utility

program called FILER.

The I/O buffer location is not checked for validity by the Disk

1I Device Driver. The block number must be in the range $0-$117

or an error type $27 (I/0 error) will result.

The Disk II Device Driver performs the same READ and
WRITE functions as the RWTS routines of DOS 3.3, but these
routines have been substantially modified to decrease disk access

time. A comparison of RWTS to th

e Disk II Device Driver is

contained in Understanding the Apple Ile by Jim Sather (1985,

Quality Software).

mmmwmmlN

m

I

(CTREN T VR TR]

() Ll

Lo

(=

L]

Using ProDOS from Assembly Language 6-9

DEVICE DRIVER PARAMETER LISTS BY COMMAND CODE

FUNCTION

REQUIRED INPUTS

$42
$43

$44-45
$46-47

RETURNED VALUES

Carry Flag

Accumulator

X-register
Y -register

FUNCTION

This call returns the status of a particular device
and is generally used to determine if a device is
present, and if so, whether it is write protected.
Additionally, some drivers will return the
number of blocks supported by that device.

Must be $00.

Unit number of disk to be accessed. The bit
assignment of a ProDOS unit number is as
follows: DSSS0000, where D is the drive number
(0=drive 1, 1 =drive 2) and SSS is the slot
number (1—7).

Unused.

Unused but sometimes checked for validity (use
$0000).

Clear —No error occurred

Set —Error occurred (see Accumulator for
type)

$00 —Noerrors

$27 —1I/Oerror or bad block number

—Nodevice connected to unit
— Disk is write protected

$28
$2B

Blocks available (low byte)
Blocks available (high byte)

This call will read a 512-byte block and store it
at the specified memory location. Most drivers
will not check the memory location, so some care
is suggested.

|

) 1 T
6-10 Beneath Apple ProDOS =] = Using ProDOS from Assembly Language 614
B =
REQUIRED INPUTS ! r RETURNED VALUES
$42 Must be $01 _ _ = l Carry Flag Clear —Noerror ocurred
$43 Unit number of disk to be aqcessed. Thfe bit ;o Set —Error occurred (see Accumulator for
assignment of a ProDOS unit number is as E] : type)
follows: DSSS0000, where D is the drive number b
(0=drive 1, 1 =drive 2), and SSS is the slot E] | Accumulator $00 —Noerrors
number (1—7). . $27 —I/Oerror or bad block number
$44-45 Address (LO/HI) of the caller’s 512-byte buffer E | = $28° —No device connected to unit
into which the block will be read. The buffer . $2B —Disk is write protected.
need not be page aligned. & | -
$46-47 Block number (LO/HI) to read. Must be valid for P
the device being called. = ! =
RETURNED VALUES @; o
Carry Flag Clear —Noerror ocurred | FUNCTION This call will format the media present in the
Set —Error occurred (see Accumulator for = ! = e . . .
type) specified device. Since all data will be destroyed,
A lat 500 I\S;pe E | r extreme care is suggested.
ccumulator —Noerrors :
$27 —I/0O error or bad block number |
$28 —Nodevice connected to unit ! L REQUIRED INPUTS
| o $42 Must be $03
! $43 Unit number of disk to be accessed. The bit
E;} r assignment of a ProDOS unit number is as
’ follows: DSSS0000, where D is the drive number
FUNCTION This call will write a 512-byte block from the E (0=drive 1, 1=drive 2), and SSS is the slot

specified memory location. Since all write number (1—7).

operations could potentially destroy data, care is &
| suggested. =« RETURNEDVALUES
REQUIRED INPUTS o Carry Flag Clear —Noerror ocurred
$42 Must be $02 T Set —Error occurred (see Accumulator for
$43 Unit number of disk to be accessed. The bit - type)
assignment of a ProDOS unit number is as g
follows: DSSS0000, where D is the drive number i Accumulator $00 —Noerrors
(0=drive 1,1=drive 2), and SSS is the slot o %gg —%gggfcreogogiigglgonuunrgber
number (1—7). - —noae ¢
$44-45 Address (LO/HI) of the caller’s 512-byte buffer = $2B —Disk is write protected
into which the block will be read. The buffer - Returncode $00 —Noerrors
need not be page aligned. E $27 —I/Oerror
$46-47 Block number (LO/HI) to read. Must be valid for - $28 —No device connected
the device being called. x $2B — Write protected

nn
bi!

J

612 Beneath Apple ProDOS . ‘ Using ProDOS from Assembly Language 6-13
£ s
CALLING THE MACHINE LANGUAGE INTERFACE & = Table 6.5 MLI Functions
The Machine Language Interface (MLI) consists of a set of [CODE(NAME DESCRIPTION
externally callable subroutines in the ProDOS Kernel. Over 20 =" $40 |ALLOC_INTERRUPT |Install interrupt handler
different functions may be performed toaccess and manipulate | ~ $41 |DEALLOC_INTERRUPT|Remove interrupt handler
files in a device independent manner (i.e. the programmer need ' $65 [QUIT Exit from one Interpreter and
not be concerned with whether the device is a diskette drive or a I dispatch another
hard disk). To avoid duplication of code and to eliminate direct '~ $80 |READ_BLOCK Read disk block by unit number
calls to unpublished entry points within ProDOS, it is l $81 |WRITE_BLOCK Write disk block by unit number
recommended that all file access be performed using the = = $82 |GET_TIME Read calendar/clock peripheral
standardized ProDOS Machine Language Interface.] card and set system dgte/tlme
All calls to the MLI are made through the System Global Pageat = ' m $CO0 |CREATE Create a new file or directory
$BF00. The first item in this page is a JMP (GOTO) to the MLI.] gg; ggi&%{og gelete a fllf?lor dlg?ctoi‘y
L | ename a file or directory
Thus, to call the MLL code the following: E | A 1§63 |SET FILE_INFO Change a file’s attributes
B o= $C4 |GET_FILE_INFO Return a file’s attributes
JSR SBF@@ l $C5 |ONLINE Relt_urn n]ames of one or all
DFB function code ; online volumes
DW addr of parms E Il = $C6 |SET_PREFIX Chafpge default pathname
ot prefix
= i E $C7 |GET_PREFIX Return default pathname prefix
. . $C8 |OPEN Open afile
where “function_code” should be replaced with a 1-byte = odg $C9 |NEWLINE Sé)t end-of-line character for
hexadecimal code representing the function you want to per:form, ! line-by-line reads
and “addr_of_parms” is the 2-byte address of a parameter list = o $CA |READ Read one or more bytes from an
you have created in your program’s memory which indicates such 3 open file
things as the file name being accessed, the record number to = o $CB |[WRITE Write one or more bytes to an
access, etc. Note that programming reentrant or “ROMable” code } open file
or routines that cannot have instructions mixed with data will be = a5 $CC |CLOSE Close one or more open files,
made more difficult by this convention. In these cases, it may be l flushing buffers
advisable to move the JSR $BF00, the three bytes following, and a = $CD |FLUSH Flush all 'write buffers for one
RTS instruction to a RAM data area and call them there. ‘ or more fx!es N o
Upon return, the processor CARRY flag will be set if an error b - $CE [SET_MARK Change File Position within an
“has occurred, and the return code will be placed in the A register. open file . N o
All other registers are saved and restored by the MLI. The valid o $CF |GET_MARK Return File Position within an
function_codes are summarized in Table 6.5. It is interesting to Do |SET_EOF open file) .
note that most of the function calls are identical between ProDOS - $ - g:ﬁggﬁ %r]lg-of-flle position of
and the Apple III SOS operating system. The names used are the ' _ -
standardized labels for these functions established by Apple for = u $D1 |GET_EOF f;;:?i‘lsnd‘(’f‘me position of an
SOS and ProDOS. . _ |sD2 |SET_BUF Change File Buffer’s address
S for an open file
- $D3 |GET_BUF Return File Buffer’s address
.- for an open file
SR

S 3

|

|

)

6-14 Beneath Apple ProDOS Using ProDOS from Assembly Language 6-15

1
i L
The general form for a parameter list is as follows: R MLI PARAMETER LISTS BY FUNCTION CODE

i fat

. PARAMETER)

0 COUNT |

! FUNCTION This funetion allows the user to install his own
' interrupt handling routine into the ProDOS

1 one or more parameters - table. The user’s handler resides in memory

U r= outside ProDOS, and only its entry point address

is stored in the System Global Page table by this
MLI call. Up to four such routines may be
installed at any time. When a maskable
interrupt (IRQ) occurs, ProDOS calls each
handler in the order in which they were installed
to allow the interrupt to be serviced. (See
Chapter 7 for more information about writing
interrupt handlers.)

v w

The PARAMETER_COUNT is a 1-byte count of the number of
parameters which follow. It is used by the MLI to validity check
the parameter list to make sure that the address following the
caller’s JSR to the MLI really points to a valid parameter list.

mmMmMmMMmmmMmmmommo e W
W

3 W

Ei = PARAMETER LIST FORMAT
NS
Ei L +0 $02
| | N
I s |
Ei o +1 PRIORITY
B owu
.-
L ADDRESS OF
L I *2/+3 HANDLER
i '
E: ‘u REQUIRED INPUTS

0 +0 Parameter count (2 parameters in list).
] oo +2/+3 Address (LO/HI format) of user-written
interrupt handling routine.

| "
* ™™ RETURNED VALUES
, N +1 Priority assigned to this handler by ProDOS: 1,
BE PREPARED! YOURE ENTERING THE DEPTHS OF ProDOS. T 2, 3or 4. This is the handler’s position in the
&

6-16 Beneath Apple ProDOS

m oo

calling sequence. It is assigned the highest

]
priority (earliest position) available. I
Return Code $00 —Noerrors E
$04 — Parameter count is not $02 ‘
$25 —Interrupt handler table full (4 are B
installed) . ‘
$53 —Invalid parameter in list (address is zero) E
i
Er 1
.
FUNCTION This function removes a previously installed 3 !
interrupt handling routine’s address from the \
ProDOS table. &= |
PARAMETER LIST FORMAT &
+0 $01 1] i
-
+1 PRIORITY | |
3
REQUIRED INPUTS = |
+0 Parameter count (1 parameter in list). l
+1 Priority of handler to be removed (1, 2, 3, or 4) as =
returned by MLI call $40 when it was installed. |
RETURNED VALUES N
Return Code $00 —Noerrors 3
$04 —Parameter count is not $01 _ {
$53 — Invalid parameter in list (PRIORITY is & |
not1,2,3,0r4) ;
3
s
FUNCTION This function causes the MLI to move three & !
pages of code from $D100 in the alternate 4K of =

L W w w w w W

T vY POR PTRR T R T R FTR Y

Using ProDOS from Assembly Language 6-17

the Language card to $1000 and branch to it.
This code frees any memory allocated by the
interpreter in the System Memory Bit Map in
the System Global Page, and then prompts the
user for the name of a new Interpreter (System
Program) to be executed. It then loads the new
Interpreter and executes it. For more
information on this call and on writing an
Interpreter, see Chapter 7. -

PARAMETER LIST FORMAT ..
+0 $04
+1 RESERVED .
+2/+3 RESERVED
+4 RESERVED
+5/+6 RESERVED

REQUIRED INPUTS

+0 Parameter-count (4 parameters in list).
+1—+6 All other fields in the parameter list are
reserved for future use. They must be present
and they must be initialized to.zeroes.

RETURNED VALUES
Return Code $04 — Parameter count is not $04

6-18 Beneath Apple ProDOS

FUNCTION

This function calls the device handler for a given
unit to read a 512-byte disk block. Calling this

frinetion ia aaannho”v thoa eama ac Co”unnr Hno

LULIVUUIVIL 1O TOOTLIvIQILY uliT same as ¢aiiln

device driver directly with the following
additional actions: the buffer memory is validity
checked for prior use; interrupts are disabled
prior to the call to the driver; the unit number is
validity checked and mapped into the appro-
priate device driver’s address; the bank switched
memory (language card) is enabled prior to the

nnnnnnn

La}l a.ud 1TOLWII Cd tU lbD IJI CV 1uua bUlldltlUll VV hcu
the call completes. For these reasons, it is
recommended that all block I/0 be performed
through the READ_BLOCK and
WRITE_BLOCK MLI calls rather than calling
the drivers directly. Direct calls are only
recommended when the application will not be
using the ProDOS Kernel and only the driver
itself is available in memory.

PARAMETER LIST FORMAT

+0

+1

+2/+3

+4/+5

$03

UNIT NUMBER

ADDRESS OF
DATA BUFFER

BLOCK NUMBER

r.r,i.'i
E‘i:!
(B
g!ﬂ
s
E =
B A
Efa
B
& =
E o
E o
E!fﬂ
Eizi
B
B
E!.E
| I
| I
L
L
|
N

Using ProDOS from Assembly Language 6-19

REQUIRED INPUTS

+0 Parameter count (3 parameters in list).

+1

+2/+3

+4/+5

RETURNED VALUES

Return Code

FUNCTION

Unit number of disk to be accessed. The bit
assignment of a ProDOS unit number is as
follows: DSSS0000, where D is the drive number
(0= drive 1, 1=drive 2) and SSS is the slot

uuulut:l U Lmuugn l)

Address (LO/HI) of the caller’s 512-byte buffer
into which the block will be read. The buffer
need not be page aligned.

Block number (LO/HI) to read. This may range
from ‘Rﬂﬂﬂn to qiﬂ] 17 for a diskette. The validity

VUV W QUL 27 10T & QISKO W, 1< vullulu_y

of this number is checked by the driver itself.

$00 —Noerrors

$04 —Parameter count is not $03

$27 —1I/0 error or bad block number

$28 —No device connected to unit

$56 — Bad buffer (already in use by ProDOS)

This function calls the device handler for a given
unit to write a 512-byte disk block. Calling this
function is essentially the same as calling the
device driver directly with the following
additional actions: the buffer memory is validity
checked for prior use; interrupts are disabled
prior to the call to the driver; the unit number is
validity checked and mapped into the appro-
priate device driver’s address: the bank switched
memory (language card) is enabled prior to the
call and restored to its previous condition when
the call completes. For these reasons, it is
recommended that all block I/0 be performed
through the READ_BLOCK and
WRITE_BLOCK MLI calls rather than calling
the drivers directly. Direct calls are only
recommended when the application will not be

b =
620 Beneath Apple ProDOS ’) Using ProDOS from Assembly Language 6-21
| SIR
using the ProDOS Kernel and only the driver |
itself is available in memory. - ; i
PARAMETER LIST FORMAT - I
E FUNCTION This function accesses any calendar/clock card
which might be in the system and sets the
*0 03 E = system date and time in the System Global
Page. If no calendar/clock handler has been
o installed (DATETIME vector in the System
1 UNIT NUMBER 6 7 Global Page), the call is ignored.
[
| 7] PARAMETERLIST
+2/+3 ADDRESS OF - None (parameter list address following JSR is $0000)
DATA BUFFER E’ a
' _ REQUIRED INPUTS
BE 0
+41+5 BLOCK NUMBER None
, B A
' . RETURNED VALUES
E 4
REQUIRED INPUTS : o .
+0 Parameter count (3 parameters in list).] 1 K $BF90/$BF91 2)3; sr‘;e;? .S}i%gﬁg%%%???;ﬁmed in. Its
+1 Unit number of disk to be accessed. The bit } MMMDIDDDD where TYYYYYY is the vear
assignment of a ProDOS unit number: is as B u (offset from 1900), MMMM is the month (31’
follows: DSSS0000, where D is the drive number 1 through 12). and bDDDD is the day
= 1 = i i 1 t)) .
(0=driv ?lléﬁmgglv?})z) and 555 is the slo B I 2 §BF92/$BF93 System Global Page time field is filled in. Tt
+2/+3 Address (LO/HI) of the caller’s 512-byte buffer | g‘/}ﬁnﬁgﬁ\ﬁ?{d I_I{/II)W EHHgggggHHH e
from which the bloc}k will be written. The buffer l hour since midnight 21;1% MMMMMMM;I iy
need not be page aligned. _ _ R u the minute (0 through 59)
+4/+5 Block number (LO/HI) to write. This may range { Return Code 00 —N g .
from $0000 to $0117 for a diskette. The validity B = eturn Lode —Noerrors
of this number is checked by the driver itself. 1 -
RETURNED VALUES. = .
Return Code $00 —Noerrors m =
$04 — Parameter count is not $03 l -
ggg :%\/Ig;g:?geogogig &L%cﬁon&l&ber = ; . FUNCTION This function creates a new file (either a data file
$2B — Disk is write rotecfed N or adirectory file). One 512-byte block of disk
D | f o space is allocated to the new file. The file may

$56 — Bad buffer (already in use by ProDOS)

not already exist. If it is desirable to recreate an

n
1!

6-22 Beneath Apple ProDOS b i = Using ProDOS from Assembly Language 6-23
Fox
old file, issue the DESTROY call first. If the { REQUIRED INPUTS
pathname given indicates that the file’s B i il +0 Parameter count (7 parameters in list).
directory entry will be in a subdirectory and - +1/+2 Address (LO/HI) of pathname buffer for file to
there are no free directory entries there, the E [3 be created. The pathname buffer consists of a 1-
subdirectory will be extended by one block. The . i - byte length followed by 1 to 63 characters of
Volume Directory may not be extended. If the E ! o name. If the first character is a “/”, the name is
new file is a directory file, a directory header is . considered to be fully qualified. If not, the
created and written to the key block. B current default prefix is added to the name by
. ProDOS when the file is created.
PARAMETER LIST FORMAT B +3 Access privileges associated with this file. The
E A access bits are:
- 1 DNBXXXWR
+0 $07 oo (high bit to low bit) where...
} D (bit7)if 1allows the file tobe DESTROYed.
B N (bit6)if 1 allows the file to be RENAMEJ.
ADDRESS OF B (bit5)if 1 indicates file needs backing up.
*1/+2 PATHNAME E A X (bits 4, 8, and 2) are reserved for future use.
W (bit 1) if 1 allows the file to be written.
| THIT! R (bit0)if 1 allows the file to be read.
3 A | Full access is $C3. A file is “locked” in the
| IS BASIC interpreter sense if the D, N, W and R
1 bits are all zeroes. It is unlocked if they are all
FILE k T ones. The B bit is forced to one when the file is
+4 TYPE created. WARNING: It is possible to set the “X”
| ST reserved bits to ones with this call since no
‘ i validity check is made by the MLI on CREATE
AUXILIARY TR (a check is made for SET_FILE_INFO,
+5/+6 FILETYPE] o however).
S ! 3 +4 Type of data stored in the file. Commonly
b supported file types are:
STORAGE | Y
+7 TYPE !
h oo $01 BAD | File containing bad blocks.
CREATION | $04 TXT | File containing ASCII text
48149 DATE | TR (BASIC data file).
] $06 BIN | File containing a binary
! X ! o memory image or machine
CREATION | _ language program.
+A/+B TIME Eo $OF DIR | Fileisadirectory.
$19 ADB | AppleWorks data base file
' Eoou
B =

6-24 Beneath Apple ProDOS

+5/+6

$1A AWP | AppleWorks word processing
file

$1B ASF | AppleWorks spread sheet file

$F0 CMD | ProDOS added command file.

$F1-$F8 User defined file types.

$FC BAS | File contains an Applesoft
program.

$FD VAR | File contains Applesoft
variables (STORE/
RESTORE).

SFE REL | File contains a relocatable
object module (EDASM).

$FF SYS | File contains a ProDOS
system program.

Other less commonly used file types are defined
in APPENDIX E. Assignment of a file type isa
convention which serves to inform the program
which accesses a file what data format it should
expect to find there. You are not prevented from
storing binary data in a TXT file or ASCII text
in a BIN file, but this runs counter to convention
and is discouraged.

Auxiliary data pertaining to the file. Its usage is
defined according to its file type above. The
current uses of this field by the Bl are:

contains the default record length
(LO/HI).

BIN | contains the address (LO/HI) at which to
load the image.

TXT

BAS | contains the address (LO/HI) of the
BASIC program image.

VAR | contains the address (LO/HI) of the
BASIC variables image.

SYS | contains $2000 (LO/HI), the load address

for system files.

|

RN NN R

uw wuw w W ia

(5657 R Vo J B e VR ¥ 0

J

-
Sy

(2 |

=)

(=

SV I bl

Y

Using ProDOS from Assembly Language 6-25

+7

+8/+9

+A/+B

Storage type or type of file organization. If this
byte contains $0D, the file is a linked
subdirectory file. If it is $01, it is a standard
seedling file (at the time of its creation). Other
values are reserved for future use. If a value of
$00, $02, or $03 is given, $01 is assumed. All
values other than $00-803 or $0D will result in
anerror.

Date of creation. If this field is set to zero, the
MLI uses the current system date (if any). If this
field is non-zero, it is the creation date in the
(LO/HI)form YYYYYYYM MMMDDDDD
where YYYYYYY is the year past 1900,
MMMM is the month (1-12) and DDDDD is the
day of the month.

Time of creation. If this field is set to zero, the
MLI uses the current system time (if any). If this
field is non-zero, it is the creation time in the
(LO/HI) form HHHHHHHH MMMMMMMM
where HHHHHHHH is the hour past midnight
and MMMMMMMM is the minute within the
hour.

RETURNED VALUES

Return Code $00 ;—No errors

$04 — Parameter count is not $07

$27 —I/Oerror

$2B — Disk is write protected

$40 —Pathname has invalid syntax

$44 — Path to file’s subdirectory is bad

$45 — Volume directory not found

$47 —Duplicate file name already in use
$48 — Disk full

$49 — Volume directory full

$4B — Bad storage type (use only $0D or $01)
$53 —Invalid parameter or address pointer
$5A —Damaged disk freespace bit map

:

6-26 Beneath Apple ProDOS

FUNCTION This function deletes a file or empty
subdirectory. Open files may not be deleted. The
Volume Directory may not be deleted. A
subdirectory is considered “locked” if it contains
any files at all, and may not be DESTROYed
until all its files and subdirectories are
DESTROYed.

PARAMETER LIST FORMAT
+0 $01
/42 ADDRESS OF
PATHNAME

REQUIRED INPUTS
+0
+1/42

RETURNED VALUES

Return Code

Parameter count (1 parameter in list).

Address (LO/HI) of pathname buffer for file to
be deleted. The pathname buffer consists of a 1-
byte length followed by 1 to 63 characters of
name. If the first character is a “/”, the name is
considered to be fully qualified. If not, the
current default prefix is added to the name by
ProDOS.

$00 —Noerrors

$04 —Parameter count is not $01

$27 —1/Oerror

$2B — Disk is write protected

$40 — Pathname has invalid syntax

$44 — Path to file’s subdirectory is bad
$45 — Volume directory not found

$46 — File not found in specified directory

e
‘s
Eia
E’iﬂ
E":j
E 3
B0
o
E 3
B3
E
| IR
NI
E g
B
=
=
= o
| Y
=
s .
ST
Iy
~

u‘

Using ProDOS from Assembly Language 6-27

R s

FUNCTION

$4A —Incompatible file format

$4B — Bad storage type

$4E — Access refused: DESTROY bit not
enabled or non-empty subdirectory

$50 — Access refused: File is currently open

$5A —Damaged disk freespace bit map

This function renames a file or subdirectory.
Only the final name in the path specification
may be renamed. This function will not rename
multiple directories in a pathname specification
(e.g. /project/myfile may not be renamed to
/task/yourfile since this involves renaming
something other than the final name in the
pathname). RENAME will not create new
subdirectories or move a file’s entry from one
directory to another (e.g. you may not rename
/project/myfile to /project/another/myfile since
this involves moving the file’s entry to
subdirectory “another”). A volume may be
renamed if no files are currently opened for it. A
file or subdirectory may be renamed if it is not
open, or if it is a read-only file (WRITE access
disabled). The new file name may not be the
same as another in the same directory.

PARAMETER LIST FORMAT

+0

+1/+2

+3/+4

$02

ADDRESS OF
OLD PATHNAME

ADDRESS OF
NEW PATHNAME

6-28 Beneath Apple ProDOS

REQUIRED INPUTS
+0 Parameter count (2 parameters in list).

+1/+2 Address (LO/HI) of pathname buffer for file to
be renamed. The pathname buffer consists of a
1-byte length followed by 1 to 63 characters of
name. If the first character is a “/”, the name is
considered to be fully qualified. If not, the
current default prefix is added to the name by
ProDOS.

+3/+4 Address (LO/HI) of pathname buffer for the new
name. The qualifying levels of the name, if any,
should match those of the old pathname given at
+1/+2. Only the last name should be different.
The format of the new pathname buffer is
identical to that of the old pathname buffer
given above. The current default prefix, if any,
will be added to a non-fully qualified pathname.

RETURNED VALUES
Return Code $00 —Noerrors

$04 — Parameter count is not $02

$27 —I/Oerror

$2B — Disk is write protected

$40 — Pathname has invalid syntax

$44 — Path to file’s subdirectory is bad

$45 — Volume directory not found

$46 — File not found in specified directory

$47 ——New name duplicates one already in
directory

$4A —Incompatible file format

$4B — Bad storage type

$4E — Access refused: RENAME bit not enabled

$50 — Access refused: File is currently open

$57 — Two volumes are online with the same
volume name

FUNCTION This function changes.the attributes (e.g. file
type, storage type, etc.) which are stored in the
directory entry which describes a file. The file

e x
S
E 3
g 3
= 3
oz
= A
B 3
oA
3
T
B
=3
B
B
B
B
oo
B
| IR
STy
I
S

Using ProDOS from Assembly Language 6-29

may be open or closed. SET_FILE_INFO will
not act upon a Volume Directory (an error of $40
will result). Before issuing this function call, it is
recommended that GET_FILE_INFO ($C4) be
used to determine the current parameter
settings for the file. (Note that the parameter
lists for the two calls have a compatible format.)

PARAMETER LIST FORMAT
+0 $07
+1/+2 ADDRESS OF
PATHNAME
.3 ACCESS
BITS
.4 FILE
TYPE
AUXILIARY
*5/+6 FILE TYPE
7
NOT
USED
+8/+9
]
A/ DATE OF LAST
MODIFICATION
TIME OF LAST
*C/+D MODIFICATION
L

6-30 Beneath Apple ProDOS

REQUIRED INPUTS
+0

Parameter count (7 parameters in list).

+1/+2 Address (LO/HI) of pathname buffer for file.

+3

+4

The pathname buffer consists of a 1-byte length
followed by 1 to 63 characters of name. If the
first character is a “/”, the name is considered to
be fully qualified. If not, the current default
prefix is added to the name by ProDOS.

New access privileges to be associated with this
file. The access bits are:

DNBXXXWR

(high bit to low bit) where...

bit 7)if 1 allows the file tobe DESTROYed.
bit 6) if 1 allows the file to be RENAMEd.
bit 5) if 1 indicates file needs backing up.
bits 4, 3, and 2) are reserved for future use.
(bit 1) if 1 allows the file to be written.

(bit 0) if 1 allows the file to be read.

Full access is $C3. A file is “locked” in the
BASIC interpreter sense if the D, N, Wand R
bits are all zeroes. It is unlocked if they are all
ones. Note that a “locked” file is not protected
against SET_FILE_INFO (how else would one
unlock it?). If an attempt is made to use the “X”
reserved bits, an error will occur. They should be
set to zeroes.

Type of data stored in the file. Commonly
supported file types are:

o W 2D

$01 BAD | File containing bad blocks.

$04 TXT | File containing ASCII text
(BASIC data file).

$06 BIN | File containing a binary
memory image or machine
language program.

$0F DIR | Fileisadirectory.

$19 ADB | AppleWorks data base file

$1A AWP | AppleWorks word processing
file

$1B ASF | AppleWorks spread sheet file

$FO CMD | ProDOS added command file.

_T

)

M@ MmMmM@EMMMWMEMCMMEMNMNENNMNWT

mwm

m m

dl (d

W W W W W W W

]

FI

w lw) E

lw

Using ProDOS from Assembly Language 6-34

+5/+6

+7
+8/+9
+A/+B

$F1-$F8 User defined file types.

$KFC BAS | File contains an Applesoft
program.

$FD VAR | File contains Applesoft
variables (STORE/
RESTORE).

$FE REL | File contains a relocatable
object module (EDASM).

$FF SYS | File contains a ProDOS
system program.

Other less commonly used file types are defined
in APPENDIX E. Assignment of a file type is a
convention which serves to inform the program
which accesses a file what data format it should
expect to find there. You are not prevented from
storing binary data in a TXT file or ASCII text
in a BIN file, but this runs counter to convention
and is discouraged.

Auxiliary data pertaining to the file. Its usage is
defined according to its file type above. The
current uses of this field by the Bl are:

TXT | contains the default record length
(LO/HI).

BIN | contains the address (LO/HI) at which to
load the image.

BAS | contains the address (LO/HI) of the
BASIC program image.

contains the address (LO/HI) of the
BASIC variables image.

SYS | contains $2000 (LO/HI), the load address
for system files.

VAR

Ignored. May be set to zero.

Ignored. May be set to zero.

Date of last modification. If this field is set to
zero, the MLI uses the current system date (if
any). If this field is non-zero, it is the
modification date in the (LO/HI) form

6-32 Beneath Apple ProDOS

+C/+D

RETURNED VALUES

Return Code

FUNCTION

YYYYYYYM MMMDDDDD where
YYYYYYY is the year past 1900, MMMM is the
month (1-12) and DDDDD is the day of the
month.

Time of last modification. If this field is set to
zero, the MLI uses the current system time (if
any). If this field is non-zero, it is the
modification time in the (LO/HI) form
HHHHHHHH MMMMMMMM where
HHHHHHHH is the hour past midnight and
MMMMMMMM is the minute within the hour.

$00 —Noerrors

$04 — Parameter count is not $07

$27 —I/Oerror

$2B — Disk is write protected

$40 — Pathname has invalid syntax

$44 — Path to file’s subdirectory is bad

$45 — Volume directory not found

$46 — File not found in specified directory

$4A —Incompatible file format

$4B — Bad storage type

$4E — Access refused: Reserved access bits
were used

$53 — Parameter value out of range

$5A —Damaged disk freespace bit map

This function reads the attributes (e.g. file type,
storage type, etc.), which describe the file and
are stored in the directory entry, and returns
them in the parameter list provided by the
caller. The file may be open or closed. If
information about a Volume Directory is
requested, the size of the volume in blocks and
the blocks in use count are also returned.

|

]

mmmmne MM e Mmoo
@ (el (a)

o W W W Wl

A

PV VY B TR PV R VST 1Y

y

n

|

re i

I

L/

1

|

j

-

L

'

)

In

“i

Using ProDOS from Assembly Language 6-33

PARAMETER LIST FORMAT
+0 $0A
ADDRESS OF
*1/2 PATHNAME
3 ACCESS
BITS
FILE
4 TYPE
e AUXILIARY
5/+6 FILE TYPE
7 STORAGE
TYPE
+8/+9 BLOCKS
USED
1
+A/+B DATE OF LAST
MODIFICATION
1
+C/+D TIME OF LAST
MODIFICATION
EJoF CREATION
DATE
1
07411 CREATION
TIME
i

6-34 Beneath Apple ProDOS

REQUIRED INPUTS
+0

Parameter count ($A parameters in list).

+1/+2 Address (LO/HI) of pathname buffer for file.

RETURNED VALUES

+3

+4

The pathname buffer consists of a 1-byte length
followed by 1 to 63 characters of name. 1f the
first character is a “/”, the name is considered to
be fully qualified. If not, the current default
prefix is added to the name by ProDOS.

Access privileges associated with this file. The
access bits are:
DNBXXXWR

(high bit to low bit) where...
(bit 7)if 1 allows the file to be DESTOR Yed.
(bit 6) if 1 allows the file to be RENAMEd.
(bit 5) if 1 indicates file needs backing up.
(bits 4, 3, and 2) are reserved for future use.
(bit 1) if 1 allows the file to be written.
(bit 0) if 1 allows the file to be read.

ull access is $C3. A file is “locked” in the
gASIC interpreter sense if the D, N, Wand R
bits are all zeroes. It is unlocked if they are all

ones. .
Type of data stored in the file. Commonly

supported file types are:

s W 2T

$01 BAD | File containing bad blocks.

$04 TXT | File containing ASCII text
(BASIC data file).

$06 BIN | File containing a binary'
memory image or machine
language program.

$OF DIR | Fileisadirectory. ‘

$19 ADB | AppleWorks data base flle_

$1A AWP | AppleWorks word processing
file .

$1B ASF | AppleWorks spread sheet f}le

$F0 CMD | ProDOS added command file.

$F1-$F8 User defined file types.

i

=
&!!s
b
B
e
Eij
B
el=
el s
gl 3
B3
B
el
B
B
B
.
Y
I
m
.
¥
S
E =

|

Using ProDOS from Assembly Language 6-35

+5/+6

+7

SFC BAS | File contains an Applesoft
program.

File contains Applesoft
variables (STORE/
RESTORE).

File contains a relocatable
object module (EDASM).
File contains a ProDOS
system program.

$FD VAR

$FE REL
$FF SYS

Other less commonly used file types are defined
in APPENDIX E. Assignment of a file typeisa
convention which serves to inform the program
which accesses a file what data format it should
expect to find there. You are not prevented from
storing binary data in a TXT file or ASCII text
in a'BIN file, but this runs counter to convention
and is discouraged.

Auxiliary data pertaining to the file. Its usage is
defined according to its file type above. The
current uses of this field by the BI are:

TXT | contains the default record length
(LO/HI).

contains the address (LO/HI) at which to
load the image.

contains the address (LO/HI) of the
BASIC program image.

contains the address (LO/HI) of the
BASIC variables image.

contains $2000 (LO/HI), the load address
for system files.

BIN
BAS
VAR
SYS

If the GET_FILE _INFO request is for the
Volume Directory, this field contains the size of

-this volume in blocks.

Storage type or type of file organization.
Currently supported storage types are:

6-36 Beneath Apple ProDOS

+8/+9

+A/+B

+C/+D

+E/+F

+10/+11.

Return Code

$0D|Linked directory file .

$01 |Seedling file (no index blocks)
$02 | Sapling file (one indexlevel)
$03 | Tree file (two index levels)

Other values are reserved for future use.
Number of 512-byte disk blocks in use by file
including index blocks and data blocks. If the
GET_FILE_INFO call is made on the volume
itself (Volume Directory), this field contains the
total number of disk blocks in use on the volume
(including system overhead)..

Date of last modification. If this field is non-zero,
it is the date of the last modification in the
(LO/HD) form YYYYYYYM MMMDDDDD
where YYYYYYY is the year past 1900,
MMMM is the month (1-12) and DDDDD is the
day of the month.

Time of last modification. If this field is non-
zero, it is the time of the last modification in the -
(LO/HI) form HHHHHHHH MMMMMMMM
where HHHHHHHH is the hour past midnight
and MMMMMMMM is the minute within the
hour.

Date of file’s creation. If this field is non-zero, it
is the creation date in the (LO/HI) form
YYYYYYYMMMMDDDDD where

YYYYYYY is the year past 1900, MMMM is the

month (1-12) and DDDDD is the day of the
month.

Time of file’s creation. If this field is non-zero, it
is the creation time in the (LO/HI) form
HHHHHHHH MMMMMMMM where
HHHHHHHH is the hour past midnight and
MMMMMMMM is the minute within the hour.
$00 —Noerrors

$04 — Parameter count is not $0A

$27 —1/0 error

$40 —Pathname has invalid syntax

$44 — Path to file’s subdirectory is bad

$45 — Volume directory not found

$46 — File not found in specified directory

a

5w
ela
E}S
£ 3
£
e
=N
£ 3
i
B3
B
B o
.
o
oA
B
.l
s
s
& =
E!Ag
8!
& .
E%?‘;

Using ProDOS from Assembly Language 6-37

$4A —Incompatible file format

$4B —Bad storage type

$563 — Parameter value out of range
$5A —Damaged disk freespace bit map

FUNCTION

This function examines all mounted disk
volumes and returns their names in the buffer
provided by the caller. If a single volume is to be
identified, the caller must provide a specific unit
number (slot and drive).

PARAMETER LIST FORMAT
+0 $02
1 UNIT NUMBER
+2/+3 ADDRESS OF
DATA BUFFER
i

REQUIRED INPUTS

+0
+1

+2/+3

Parameter count (2 parameters in list).

Unit number of specific device to be examined.
If all online volumes are to be identified, set this
field to zero. The bit assignment for a specific
unit number is: DSSS0000, where D is the drive
number (0=drive 1, 1=drive 2) and SSS is the slot
number (1 through 7).

Address (LO/HI) of a buffer to contain the
volume names returned by ProDOS. If a specific
unit is to be examined, a 16-byte buffer must be
provided. If the call is non-specific (UNIT = 0),
then the buffer must be 256 bytes to allow for up
to 16 online volumes.

]
|

6-38 Beneath Apple ProDOS i < Using ProDOS from Assembly Language 6-39
S |
RETURNED VALUES = ! 3
Buffer If the return code in the accumulator is zero, the - I
caller’s buffer will contain zero or more volume =y
name entries of format described below. The I
volume names will be given in the order in which =
ProDOS searches for a volume, i.e. the boot I
volume first, followed by slot numbers lower oo
than the boot slot, wrapping around to higher I
slots last. — L
ONLINE VOLUME ENTRY |
—— £ 3
byte 0 DSSSLLLL: where D is the drive ’
number (0=drive 1, 1=drive 2), SSS is =
the slot number (1 through 7), and !
LLLL is the length of the name =

which follows. If LLLL is zero, an
error occurred in examining this
volume. The return code is in the
first byte of the name field. If byte 0
is zero, then there are no more
volume entries in the buffer.

bytes 1-15| Volume name or 1-byte error code.
No slash precedes the name.

™

FUNCTION This function changes the default prefix which is
attached to any pathnames passed to the MLI
which are not fully qualified (do not start with a
slash). The MLI follows the prefix given,

Return Code $00 —Noerrors
$04 —Parameter count is not $02
$55 — Volume Control Block full (too many open

mmm®™mMmMmTmm
il w) la)

i
files)
$56 — Bad buffer address (check system ! T locating each directory at each level of the prefix
memory bit map) } to make sure that they exist on a mounted
TR volume.
The following error codes may appear for a f ARAM
specific unit in byte 1 of a buffer entry. If so, the = LT P. ETER LIST FORMAT
return code above will be $00. 1 -
=
$27 —1/0 error on this unit I ‘0 01
$28 — Device not connected (e.g. no drive 2) | I
$2E — Diskette switched while file was open i
$45 — Volume directory not found | I
$52 —Not a ProDOS disk volume [1742 ADDRESS OF
$57 — Duplicate volume—Byte 3 of buffer entry N PATHNAME
contains the unit number of the duplicate 1 - N
(ST

6-40 Beneath Apple ProDOS

REQUIRED INPUTS
+0 Parameter count (1 parameter in list).

+1/+2 Address (LO/HI) of pathname buffer for the new
prefix. The pathname buffer consists of one byte
of length followed by 1 to 63 characters of name.
If the first character is a “/”, the name is
considered to be fully qualified. If not, the old
default prefix is added to the new one to form a
completely qualified default prefix (for a total
length of no more than 64 characters). The last
name in the prefix must be that of a directory
file. The prefix may be eliminated by specifying
a null (0 length) prefix. An ending slash is
assumed if it is omitted.

RETURNED VALUES
Return Code $00 —Noerrors
$04 — Parameter count is not $01
$40 —Pathname has invalid syntax or prefix
too long
$44 —Path to final subdirectory is bad
$45 — Volume directory not found
$46 —Final subdirectory file not found
$4A —Incompatible file format
$4B — Bad storage type
$5A —Damaged disk freespace bit map

FUNCTION This function returns the default prefix, if any,

to the caller’s buffer.
PARAMETER LIST FORMAT
+0 $01
ADDRESS OF
v PATHNAME

R —

m m

mrrmrpmmmmmmmmmmm
w ol W e e e e e W w

\nl

m

)

w el e

im

|
J

(m

In!

!

in

il

1/

Using ProDOS from Assembly Language 6-44

REQUIRED INPUTS

+0 Parameter count (1 parameter in list).
+1/+2 Address (LO/HI) of pathname buffer into which
the MLI will copy the default prefix. The buffer
must be at least 64 bytes long.
RETURNED VALUES

"Buffer The buffer will contain the current MLI default
prefix. The prefix consists of one byte of length
followed by up to 63 characters of prefix. If the
length is zero, the prefix is null. Otherwise, the
prefix starts and ends with a slash.

Return Code $00 —Noerrors

FUNCTION

$04 — Parameter count is not $01
$56 — Bad buffer address (check system
memory bit map)

This function locates a file on a volume and sets
up internal control blocks (a File Control
Bloeck—FCB, and a Volume Control Block—VCB)
to allow the user to read or write it. A reference
number (from 1 to 8) is assigned by the MLI to
the open file for future identification. (The
reference number uniquely identifies the FCB
which is being used with the file.) The current
position for reading or writing is set to zero
(start of the file). At most, eight files may be
open at one time. More than one OPEN may be
issued to the same file if the file’s access is
WRITE disabled (read-only file).

Once a file is opened, it should always be
closed (using the MLI CLOSE call). This is to
permit the MLI to release the reference number
for use by other OPENs. In addition, the MLI
keeps a count of the number of files which are
open on a volume. If the diskette is switched

6-42 Beneath Apple ProDOS

while files are open, error return codes are
produced.

A directory file may also be opened (for
READs only). When accessing a directory, do
not make assumptions about the length of an
entry or the number of entries per block—use
the fields in the directory header which are
provided for this purpose. This will help to
insure that your program will work for future
releases of ProDOS. A directory file may be read

only, not written.

PARAMETER LIST FORMAT
+0 $03
/o2 ADDRESS OF
PATHNAME
1
ADDRESS OF
+3/+4 FILE BUFFER
" REFERENCE
NUMBER

REQUIRED INPUTS

+0
+1/+2

Parameter count (3 parameters in list).
Address (LO/HI) of pathname buffer for file.
The pathname buffer consists of one byte of
length followed by 1 to 63 characters of name. If
the first character isa “/”, the name is
considered to be fully qualified. If not, the
current default prefix is added to the name by
ProDOS.

m m N

m mmmwmmmmMm M wm m
w im) ln) L

m m

(A

) W W oW W

m)

PR

™

im' (nl nl iw

ax!

Using ProDOS from Assembly Language 6-43

+3/+4

$BF94

Address (LO/HI) of a 1024-byte file buffer,
provided by the caller in his memory, to be used
by the MLI while the file is open. The buffer
must begin on an even page boundary (LO
portion of address must be zero). The MLI uses
the buffer to hold the current data block and the
current index block respectively. Its contents
need not be intitialized by the caller. It should
not be tampered with by the caller while the file
remains open.

The LEVEL byte in the System Global Page
may be set to indicate the level of this OPEN. If a
subsequent CLOSE is issued witha REF NUM
of zero, then all files of a given level or higher

will be closed. This feature is handy in that it

allows group CLOSEs on user-defined classes of
files. Normally, LEVEL is set to zero.

RETURNED VALUES

+5

Return Code

A reference number assigned to this open file by
the MLI (from $01 to $08). The caller should
make a note of this number and use it in all
future references to this open file. A reference
number is used to identify open files instead of
the pathname since it is possible to maintain
multiple “opens” on the same read-only file.

$00 —Noerrors

$04 —Parameter count is not $03

$27 —I/Oerror

$40 —Pathname has invalid syntax

$42 —Eight files are already open

$44 — Path to file’s subdirectory is bad

$45 — Volume directory not found

$46 —File not found in specified directory

$4B —Bad storage type

$50 —File already open (WRITE enabled)

$53 —Parameter value out of range (REF
NUM)

$56 —Bad buffer address (check system
memory bit map)

$5A —Damaged disk freespace bit map

=N i
6-44 Beneath Apple ProDOS l Using ProDOS from Assembly Language 6-45
R
l : mask is zero, then the line by line mode is
: i q disabled and the continuous byte stream mode is
! enabled. If a mask of $FF is given, the
l‘ i | NEWLINE character must exactly match what
. . . S isread. Other values for the AND mask allow
FUNCTION A file may be read as 91ther a contlnuops stream f i § “don’t care” bits. For example, $7F allows the
of bytes orasa collection of lines, terminated by S MSB to be either on or off without affecting the
newline characters. (sgch asa RETURN = | comparison (e.g. $0D or $8D will both be treated
character). Whep a flle is first opened, the . N as newline if $0D is the NEWLINE character
former assumption is made. To epable thelineby m '+ g and the AND mask is $7F).
!me mode, the% N.EWLINE fun’qtlon may be — ; +3 Theactual value of the NEWLINE character.
invoked, specifying the end of line characterto &1 1 '§ Normally, when line by line mode is used, this is
be used. All future READ operations on the | should be set to $0D. Note that if the AND mask
specitied open file will be t.e rminated either = o is $00, this character is ignored (even if it is also
when a newline ¢ haracter is detected, or When _ $00; if $00 is to be the newline character, set the
the read length is exhausted (or at end of file). m AND mask to $FF).
_ Return Code $00 —No errors
» L] $04 — Parameter count is not $03
+0 $03 i $43 —Invalid reference number
=
REFERENCE = o
! NUMBER]
.
= ‘ 4 FUNCTION This function reads a number of bytes, starting
AND oo at the current file position in an open file. The
2 MASK ' l number of bytes read depends upon the length
E o= requested by the caller, whether or not a newline
T character has been set (see the $C9 function call),
3 NEWLINE (T and whether the end of file is reached during the
CHARACTER ' read. The current file position is updated to point
[| - to the byte following the last byte read.
' J In general, read operations will be much more
REQUIRED INPUTS o e efficient if the amount of data transferred
+0 Parameter count (3 parameters in list).) } exceeds a blogk (512 bytes). Special “direct read”
+1 Reference number for an open file as returned < Jn - g?ﬁ_?eﬁrllsgt’s’ :ggh;ﬁ (’)cilvedlgfilégtt;)er;r('iesv:ongh Sg:ﬁli .
by OPEN. 0 ; .
*2 AND mask. The value given hereis logieally By wtiached to the F1e. T o S o
NDed with th tents of eac te rea | .
k‘;&efors a‘g’;mpaﬁsg: g?ni‘ée with t}};e B when whole blocks may be read at a time. Use of
NEWLINE character given in +3. If the AND '4 the NEWLINE feature automatically disables

n
ul

6-46 Beneath Apple ProDOS

“direct reads.” (NOTE: It is this “direct read”
feature which makes ProDOS I/0 faster than
Apple DOS.)

Note that, once a file is opened, no check is
made by the MLI that the user has not switched
diskette volumes in the drive. If this occurs, it is
possible to read random portions of the new
diskette volume! If the programmer is issuing a
READ after a period of disk inactivity, it is
recommended that a ONLINE call ($C5) be
issued to make sure that the same diskette is still

intha r]v-nra
111 uliv Ul

PARAMETER LIST FORMAT
0 $04
REFERENCE
+ NUMBER
. ADDRESS OF
*2/+3 DATA BUFFER
1
“dfs REQUESTED
475 LENGTH
1
6/+7 ACTUAL
o LENGTH
1

REQUIRED INPUTS

+0 Parameter count (4 parameters in list).

+1 Reference number for an open file as returned
by OPEN.
Address (LO/HI) of a sufficiently large buffer
provided by the caller into which the data will be
read. This buffer should not be confused with the

+2/+3

MmN MMANNNN NN MW

A_"; J_"___________,MM

VTR TRT?

W UL W W u

(-

i o I) W

lm;

m

Using ProDOS from Assembly Language 6-47

“file buffer” passed to OPEN which is separate,
and should not be used by the caller’s program.
Maximum number (LO/HI) of bytes of data to
read. This is usually the size of the data buffer. If
lines are being read, make sure this value is as
large as the longest line, including the end of line
character itself.

+4/+5

RETURNED VALUES
+6/+7

T A/YTYN 01

Actual number (LO/HI) of bytes placed in the

caller’s data buffer by the MLI. This value will

differ from the requested length in +4/+5 if a

newline character was found, if the end of the

file was reached, or if an error occurred during

the read operation. If a newline character

terminated the read, this length will include the

newline character itself. If the read began at the

end of file position, this field is set to zero, and

the end of file return code ($4C) is placed in the

A register.

$00 —Noerrors

$04 — Parameter count is not $04

$27 —I/Oerror

$43 —Invalid reference number

$4C — Atend of file, nothing was read

$4E — Access refused: Read bit not enabled

$56 — Bad buffer address (check System
memory bit map)

$5A —Damaged disk freespace bit map

Return Code

; $CB WRITE o
,%ONE OR MORE BYTES TO AN OPEN FI I

FUNCTION This funection writes a number of bytes to disk,
starting at the current file position in an open
file. You may not write to a directory. The
current file position is updated to point to the
byte following the last byte written. The end of
file mark is moved if necessary, and new data
and/or index blocks are allocated to the file as
necessary. In the interest of efficiency, the data

6-48 Beneath Apple ProDOS

may or may not be written to disk at this time.
As much as one block’s worth (512 bytes) may
remain in the file buffer to be written later when
the block is filled, the file is closed or flushed, or
when the file position is changed. For this
reason, it is important to close all files before
powering off the machine.

Note that, once a file is opened, no check is
made by the MLI that the user has not switched
diskette volumes in the drive. If this occurs, it is
possible to write on random portions of the new
diskette volume! If the programmer is issuing a
WRITE after a period of disk inactivity, it is
recommended thata RETURN ONLINE
VOLUMES call ($C5) be issued to make sure
that the same diskette is still in the drive.

Note that there is no “direct write” feature

similar to the “direct read” feature deseribed
under the READ MLI call.
PARAMETER LIST FORMAT
+0 $04
REFERENCE
1 NUMBER
ADDRESS OF
v2l+3 DATA BUFFER
REQUESTED
+41+5 LENGTH
1
ACTUAL
*6/+7 LENGTH
1

N

LA\
I

m MMM MWEMMMMMMWMMEMWMWO N
-V VRV VRNV VRNV VRV VRV VRN T VRV TRV TRV TR

mmm

momw

e o o

el e

1 VR L

1y

i

Using ProDQOS from Assembly Language 6-49

REQUIRED INPUTS

+0
+1

Parameter count (4 parameters in list).

Reference number for an open file as returned
by OPEN.

+2/+3 Address (LO/HI) of the data to be written to
disk. This buffer should not be confused with the
“file buffer” passed to OPEN which is separate,
and should not be used by the caller’s program.

+4/+5 Number (LO/HI) of bytes of data to write from
the data buffer.

RETURNED VALUES

+6/+7 Actual number of bytes written. Unless an error
occurs during the operation, this field should
match the requested length in +4/+5.

Return Code $00 —Noerrors

FUNCTION

$04 —Parameter count is not $04

$27 —I/Oerror

$2B — Disk is write protected

$43 — Invalid reference number

$48 — Disk full

$4E — Access refused: WRITE bit not enabled

$56 —Bad buffer address (check System
memory bit map)

$5A — Damaged disk freespace bit map

For a specific open file, this function flushes any
data which has not yet actually gone to disk from
the file buffer, releases the file buffer to the
caller for reuse, sets the BACKUP bit in the
ACCESS flags for the file, updates the directory
entry for the file with block count, etc., and frees
the reference number and File Control Block
(FCB) for use with a later OPEN. Each OPEN
must have a corresponding CLOSE. If a non-
specific call is made (REFNUM =0), all open
files at the current LEVEL ($BF94) or higher
are closed.

- FUNCTION

“6:580 Beneath Apple ProDOS
.PARAMETER LIST FORMAT
+0 $01
” REFERENCE
NUMBER

REQUIRED INPUTS

+0 Parameter count (1 parameter in list).

+1 Reference number for an open file as returned
by OPEN or $00 if all files at the current level or
higher are to be closed. If a multiple file request
is made and an error occurs on one file, this does
not prevent the MLI from attempting to
complete the close operation for any other files.
If multiple errors occur, only the last error
return code is passed back to the caller.

Current file LEVEL in the System Global Page.
If set to $00 before this call, all open files are
closed.

$BF94

RETURNED VALUES
Return Code $00 —Noerrors
$04 — Parameter count is not $01
$27 —I/Oerror
$2B — Disk is write protected
$43 —Invalid reference number
$5A —Damaged disk freespace bit map

For a specific open file, this function flushes any
data which has not-yet actually gone to disk from
the file buffer, updates the directory entry for
the file, and sets the BACKUP bit in the
ACCESS flags for the file (if data was written).

e
V]

m m MM ®w X
oW w ey ww iy ow o W

m mmmmm

mmmm

wm

nrmwmwrm
R

1

JRNNT Y TN VT T I - VY

:LEN

i

Using ProDOS from Assembly Language 6-51

If no write operations have oceurred, then the
FLUSH call is ignored. If a non-specific call is
made (REFNUM =0), all open files at the
current LEVEL ($BF94) or higher are flushed.
The flush call is useful when it is desirable to
force write data out to disk before a long period
of inactivity in case of power loss or other

disasters.
PARAMETER LIST FORMAT
+0 $01
+ REFERENCE
NUMBER

REQUIRED INPUTS

+0 Parameter count (1 parameter in list).

+1 Reference number for an open file as returned
by OPEN, or $00 if all files at the current level
or higher are to be flushed. If a multiple file
request is made and an error occurs on one file,
this does not prevent the MLI from attempting
to complete the flush operation for any other
files. If multiple errors occur, only the last error
return code is passed back to the caller.

Current file LEVEL in the System Global Page.
If set to $00 before this call, all open files are
flushed.

$BF94

RETURNED VALUES
Return.Code

$00 —Noerrors

$04 —Parameter count is not $01

$27 —1/0 error

$2B — Disk is write protected

$43 —Invalid reference number

$5A —Damaged disk freespace bit map

6-52 Beneath Apple ProDOS

FUNCTION

When a file is first opened, the MLI establishes a
“file position” at which reading or writing will
occur at the beginning of the file (zero). As data
is read or written, the file position is moved to
allow sequential access to the file. This file
position describes the relative byte offset to the
next byte in the file to be accessed. If random
access to a file is desired, the caller may use this
function to change the position to another
location in the file before issuing a READ or
WRITE call. If the file position is moved to an
area of the file where no data exists (i.e. an area
which has never been written), new data and/or
index blocks will be allocated when the next
WRITE call is made. This function may be used
in conjunction with the GET_EOF call ($D1) to
append data to the end of a file.

PARAMETER LIST FORMAT

+0

+1

+2/+3/+4

$02

REFERENCE

NUMBER

NEW FILE POSITION

REQUIRED INPUTS

+0
+1

+2/+3/+4

Parameter count (2 parameters in list).
Reference number for an open file as returned
by OPEN.

The new file position to be set. This is a 3-byte
number (least significant byte first, most

mmmmmmMmm®wMmmm N

mwmmmmm

T wmm
B

n
W

Wowow W ww e wWww Ww W w

VT A T T

1EJ

|

e

-3

Using ProDOS from Assembiy Language 6-53

significant byte last) representing the byte offset
into the file. The position of the first byte in a file
1s zero. The position may not exceed the current
end of file position.

RETURNED VALUES

Return Code

s

FUNCTION

$00 —Noerrors

$04 —Parameter count is not $02

$43 —Invalid reference number

$4D — F'ile position beyond end of file
$5A —Damaged disk freespace bit map

When a file is first opened, the MLI establishes a
“file position” at which reading or writing will
occur at the beginning of the file (zero). As data
is read or written, the file position is moved to
allow sequential access to the file. This file
position describes the relative byte offset to the
next byte in the file to be accessed. This function
will return the current value of the file position.

PARAMETER LIST FORMAT
+0 $02
1 REFERENCE
NUMBER
+2/+3/+4 FILE POSITION

6-54 Beneath Apple ProDOS

REQUIRED INPUTS
+0 Parameter count (2 parameters in list).
+1 Reference number for an open file as returned
by OPEN.

RETURNED VALUES
+2/+3/+4 The current file position value. This is a 3-byte
number (least significant byte first, most
significant byte last) representing the byte offset
into the file of the next byte to be read or written.
The position of the first byte in a file is zero.
Return Code $00 —Noerrors
$04 — Parameter count is not $02
$43 —Invalid reference number

FUNCTION This function changes the end of file mark (or
file size). It is not normally necessary to change
the end of file mark since the WRITE function
will automatically extend the EOF mark as new
data is written to the end of the file. This
function is useful, however, to truncate a file or
to allow random positioning within a very large
sparse file. If the new end of file position passed
by the caller is less than the old one, the file is
truncated and excess data and index blocks are
freed for reuse by the system. If it exceeds or
equals the old value, no new blocks will be
allocated until they are needed in a WRITE
operation. If the new end of file would leave the
current file position outside the limits of the file,
it is forced back to the new end of file position.
The EOF mark of a directory file may not be
changed with SET. EOF. Note that the file size
does not necessarily represent the amount of disk
space the file requires, since the file may be
sparse (see Chapter 4).

m

m mx

mmMmmmmmMmwmmwmmmwmm ®

|

UL

o

"

L

n

wouwww e wwwww w W

VoI I Vot R bl

VANV AR AR .

S I 4

'

11

Using ProDOS from Assembly Language 6-55

PARAMETER LIST FORMAT
+0 $02
. REFERENCE
NUMBER
¥2[+3/+ NEW EOF
21374 POSITION
i 1

REQUIRED INPUTS

+0
+1

+2/+3/+4

Parameter count (2 parameters in list).
Reference number for an open file as returned
by OPEN.

The new end of file position. This is a 3-byte
number (least significant byte first, most
significant byte last) representing the byte offset
into the file of the last byte plus one. The position
of the first byte in the file is zero (the EOF of an
empty file).

RETURNED VALUES

Return Code

$00 —No errors

$04 —Parameter count is not $02

$27 —1/0 error

$43 — Invalid reference number

$4D — Position is too large for volume

$4E — Access refused: WRITE bit not enabled
$5A —Damaged disk freespace bit map

FUNCTION

This function returns the value of the end of file
mark for an open file. GET_EOF may be used to
determine the size of a sequential file or to find
the end of a file so that data may be appended to

6-56

Beneath Apple ProDOS

it. GET_EOF for a directory file will return the
number of blocks used multiplied by 512 bytes.
Note that the file size does not necessarily
represent the amount of disk space the file
requires, since the file may be sparse (see
Chapter 4).

PARAMETER LIST FORMAT

+0

$02

+1

REFERENCE
NUMBER

+2/+3/+4

EOF
POSITION

REQUIRED INPUTS

+0
+1

RETURNED VALUES

+2/+3/+4

Return Code

Parameter count (2 parameters in list).
Reference number for an open file as returned
by OPEN.

The current end of file position. This is a 3-byte
number (least significant byte first, most
significant byte last) representing the byte offset
into the file of the last byte plus one. The position
of the first byte in the file is zero (the EOF of an
empty file).

$00 —Noerrors
$04 — Parameter count is not $02
$43 —Invalid reference number

FiS
Ei‘i
EiS
Eiﬂ
Eiﬂ
Eiﬁ
= n
= A
=
= =
T
= g
oA
|
| TR
]
LI
LT
TR
TR
LTI
TR
TR
SR

|

Using ProDOS from Assembly Language 6-57

FUNCTION

This function allows the caller to move an open
file’s file buffer to another location in memory.
Since READ and WRITE references are by
Reference Number, the MLI must memorize the
location of the file buffer at OPEN time. If the
buffer must be moved, this call allows the
programmer to inform the MLI and allow it to
move the contents of the buffer to the new
location. The system memory bit map is updated
to reflect the change.

PARAMETER LIST FORMAT
+0 802
“ REFERENCE
NUMBER
+2+3 N EBUFER
1

REQUIRED INPUTS

+0
+1

+2/+3

Parameter count (2 parameters in list).
Reference number for an open file as returned
by OPEN.

The address (LO/HI) of a new 1024-byte location
in which the MLI may maintain the open file’s
buffer. It must be on an even page boundary (LO
byte of address is zero) and not be allocated by
the MLI to any open file. The contents of the
current file buffer are transferred to this new
area, and the old buffer is marked released in
the System Global Page memory bit map.

6-58 Beneath Apple ProDOS:

RETURNED VALUES
Return Code $00 —No errors
\ $04 — Parameter count is not $02
$48 —Invalid reference number
$56 — Buffer already in use by MLI

FUNCTION This function returns the address of the file
buffer associated with an open file to the caller.

PARAMETER LIST FORMAT
+0 $02
o REFERENCE
NUMBER
/43 ADDRESS OF
FILE BUFFER
1

REQUIRED INPUTS
+0 Parameter count (2 parameters in list).

+1 Reference number for an open file as returned
by OPEN.

RETURNED VALUES
+2/+3 The address (LO/HI) of the 1024-byte file buffer
in use by the MLI for this file.
Return Code $00 —No errors
$04 — Parameter count is not $02
$43 —Invalid reference number

= W Ww W e W W Ww e wa w

VBN N R R O T L L |

o

|

V]

N U LSV U RV Y VR Vo N VTR |

|l

Using ProDOS from Assembly Language 6-59

MLI ERROR CODES

$00
$01
$04

$25

$27

$28

$2B

$2E

$40

$42

$43

$44

$45

No error occurred. Operation completed successfully.
Invalid MLI function code number.

Incorrect parameter count in parameter list for the function
code used.

The ProDOS interrupt handler vector table is full. There
are already four addresses stored there.

A device driver reported an Input/Output error on the
media. This could be anything from the diskette drive door
being open to a real error on the surface of the diskette.

No device is connected for the unit number given. This can
happen if no identifiable controller ROM was present in the
indicated slot.

An attempt was made to write to the disk, but it was write
protected. Remove the tape over the write-protect notch if
you wish to write on this diskette.

In the process of performing an ONLINE ecall, the MLI
discovered that a diskette for which there were open files
had been removed from its drive and replaced by another
volume. Since no check is made when writing to an open file,
it is possible that some blocks on the new volume have been
damaged.

The pathname has invalid syntax. Check to make sure the
first byte is a count of the number-of characters that follow.
Also, be sure that each sub-level index begins with an
alphabetic character and that each level is separated from
the next by a slash (/).

Eight files are open and there is no more room in the MLI’s
File Control Block (FCB) table for another open file. If you
didn’t expect any files to be open, set the LEVEL to zero and
issue a global CLOSE.

The reference number passed in the parameter list does not
denote an open file. Make sure that the OPEN call was
successful before issuing other calls by reference number.

The pathname supplied could not be followed to the final
directory. One or more of the subordinate directories in the
path did not exist.

The volume indicated by the pathname is not currently
mounted on any drive.

6-60 Beneath Apple ProDOS

$46

$47

$48

$49

$4A

$4B

$4C

$4D

$4E

$50

$51

The file indicated by the last name in the pathname was not
found in the final directory.

A CREATE or RENAME was attempted and the file
named already exists. To perform the operation would
create a duplicate entry in the directory.

An attempt was made to find one or more free disk blocks (to
extend a directory, add a new data block for a file, etc.), but
the Volume Bit Map indicates that the diskette is now full.

An attempt was made to CREATE another file in the
Volume Directory, but there are no free entries. Unlike
subdirectories, the Volume Directory is of a fixed size (51
entries) and cannot be extended.

An earlier version of the ProDOS MLI is being used to read
a file which was created with a later version. The older MLI
cannot handle this file properly. Use a newer version of
ProDOS. This error can also occur if the final subdirectory
header has an improper format. The byte at +$14 in the
subdirectory key block (reserved bytes) must contain 5 and
only 5 one bits (it is usually $75).

The storage type of a file is not one of the storage types
currently supported by this version of ProDOS. Currently,
only Seedlings ($01), Saplings ($02), Trees ($03) and
Directories ($0D) are supported.

A READ operation was attempted and the current file
position is at the End of File mark. No data was transferred.

An attempt was made to move the file position past the End
of File mark. If this position is desired, first move the EOF
mark.

An error occurred having to do with the ACCESS bits for a
file. Usually this means you attempted to WRITE to a write
protected file, or you attempted to DESTROY or RENAME
a locked file. You can also get this error if any of the reserved
bits are ones for the ACCESS byte of a SET_FILE_INFO
call.

An attempt was made to OPEN, RENAME, or DESTROY
a previously OPENed file. Multiple OPENs are only
allowed if the file’s WRITE ACCESS bit is off (write
disabled).

When searching a directory, it was determined that the
count of active file entries in the directory header was larger

A)

m
VI ||

4\

m

m m mmEmmmmQmmm
a2 &

mo

L

m e mim

ad & W W w W

¥ IRt T Ul B

N ALY RN o B U BN o B Ul

| Y S 4

Using ProDOS from Assembly Language 6-61

than the number of entries actually encountered. The
directory is damaged and some file entries may be lost.

$52 The disk volume which was accessed is not a ProDOS disk.
The criteria for determining whether a volume is a ProDOS
formatted volume are: the first two bytes of the Volume
Directory key block must be zero (previous block pointer);
and the byte at offset 4 into the Volume Directory key block
must be $E or §F (storage type).

$53 One or more of the values in the parameter list is not within

its acceptable range. For example, an interrupt handler
address of $0000 was passed to ALLOC_INTERRUPT.

$55 At most, only eight “mounted” volumes may be known to
ProDOS at one time. Usually this is no problem since only
eight files may be open at a time. However, if a single file is
open on each of eight different volumes and an ONLINE call
is made requesting the volume name mounted on a ninth
device, this error will result.

$56 The address of the I/0 file buffer passed to OPEN or
SET_BUF is invalid. The buffer overlaps a previously
assigned buffer, memory below $200, or ProDOS itself. The
buffer must be in the caller’s memory, and all four of its
pages must be marked free in the System Global Page
memory bit map.

$57 Inthe process of mounting volumes and recording their
names in the Volume Control Block (VCB) table, the MLI
discovered two volumes with the same name. Since all file
references must be made by volume name and not necessarily
by slot and drive, this condition is not permitted.

$5A The Volume Bit Map describing the freespace on the volume
isdamaged. A one bit was found, indicating a free block, for
a block outside the legal extent of the volume (for a block
number beyond the end of the volume).

PASSING COMMAND LINES TO THE BASIC INTERPRETER

For machine language programs running under the ProDOS
BASIC Interpreter (BI), an interface is provided to allow
execution of command lines created by a program, as if they had
been entered from the keyboard. This is the highest level and
perhaps the easiest to use ProDOS interface. Through it, a

6-62 Beneath Apple ProDOS

machine language program may easily produce CATALOG
listings, DELETE or RENAME files, etec.

To call the BI command handler, place the command string in
the monitor GETLN line input buffer at $200. The line may be up
to 255 characters in length, and must be followed by a carriage
return character ($8D). The most significant bit of each character
should be set, and all alphabetics should be in upper case. Once this
has been done, call $BE03 in the BI’s Global Page (JSR $BE03).

If an error occurs, a 1-byte Bl error code will be placed in
$BEOF. Possible codes are listed in Table 6.6.

Table 6.6 BASIC Interpreter Error Codes

CODE | MESSAGE

$00 No error

$01 Not used

$02 RANGE ERROR

$03 NO DEVICE CONNECTED
$04 WRITE PROTECTED

$05 END OF DATA

$06 PATH NOT FOUND

$07 Not used

$08 I/0 ERROR

$09 DISK FULL

$O0A FILE LOCKED

$0B INVALID PARAMETER
$0C RAM TOO LARGE

$0D FILE TYPE MISMATCH
$0E PROGRAM TOO LARGE
$0F NOT DIRECT COMMAND

$10 SYNTAX ERROR

$11 DIRECTORY FULL

312 FILE NOT OPEN

$13 DUPLICATE FILE NAME
$14 FILE BUSY

315 FILE(S) STILL OPEN

If you wish to print an error message, you need not have a table
of messages similar to the above. Instead, place the error number
in the A register and call $BEOC (JSR $BEO0C).

Keep in mind that, unless the machine language program was
called by a BASIC program, only direct commands may be issued
(as if from the keyboard). BASIC file commands such as OPEN,

;|
|
|
|
|
|

=
~
~
~
=~
~
L
L
L
=
L
E

mmemMmmMmmMmMmMmmmMmMmmMm\pmQmwm o m m

wm

mm

m

m

mm

= &

1 AR V]

\LJ

|

1!

Using ProDOS from Assembly Language 6-63

READ, WRITE, APPEND, and POSITION will result ina NOT
DIRECT COMMAND error. Under Apple DOS, commands could
be printed with a control-D from an assembly language program,
exactly as with BASIC programs. Under ProDOS, this method no
longer works. This is because the intercepts used for the “control-D
interface” are no longer in the screen output vector, but are now in
the Applesoft trace facility, which, of course, isn’t active when
your machine language program is running.

COMMON ALGORITHMS

Given below are several pieces of code which may be used when
working with ProDOS.

IS ProDOS ACTIVE?

The following series of instructions should be used prior to
attempting to call the ProDOS MLI.

LDA S$BFQ@
CMP #S4C
BNE NOPRODS

GET MLI VECTOR JMP
IS IT A JUMP?
NO, PRODOS NOT ACTIVE

WHAT KIND OF MACHINE IS THIS?

This code will test to determine what type of Apple is running
the program.

LDA #508
BIT S$BF98 TEST MACHID FROM GLOBAL PAGE
BEQ OLDSYS OLDER SYSTEM
BPL UNKN FUTURE SYSTEM - UNKNOWN
BVC APIIC IT'S AN APPLE IIC
BVS UNKN OTHERWISE, UNKNOWN
OLDSYS BMI EOR3 EITHER A IIE or a III
BVC APII IT'S AN APPLE 11
BVS APIIP IT'S AN APPLE II+
IT'S AN APPLE III

EOR3 BVS APIII
. OTHERWISE ITS AN APPLE IIE

HOW MUCH MEMORY IS IN THIS MACHINE?

This code will determine whether the Apple has 48K, 64K or
128K of RAM.

LDA $BF98 GET MACHID FROM GLOBAL PAGE
ASL A MOVE BITS TO TEST POSITION
ASL A
BPL SMLMEM 48K
ASL A

128K

BVS MEM128
ce OTHERWISE 64K

6-64 Beneath Apple ProDOS

]

&

GIVEN A PAGE NUMBER, SEE IF IT IS FREE

This code examines ProDOS’s memory bit map to see if a page is

marked free. If so, the page is marked as allocated.

BITMAP EQU $BF58 SEE PAGE 8-6
LDA #PAGE GET PAGE NUMBER (MSB OF ADDR)
JSR LOCATE LOCATE ITS BIT IN BITMAP
AND BITMAP,Y IS IT ALLOCATED?
BNE INUSE YES, CAN'T TOUCH IT

TXA PUT

BIT PATTERN IN ACCUM

ORA BITMAP,Y MARK THIS PAGE AS IN USE
STA BITMAP,Y UPDATE MAP
e WE'VE GOT IT NOW

LOCATE PHA SAVE PAGE NUMBER
AND #$07 ISOLATE BIT POSITION
TAY THIS IS INDEX INTO MASK TABLE
LDX BITMASK,Y PUT PROPER BIT PATTERN IN X
PLA RESTORE PAGE NUMBER
LSR A DIVIDE PAGE BY 8
LSR A
LSR A
TAY Y-REG IS OFFSET INTO BITMAP
TXA PUT BIT PATTERN IN ACCUM
RTS DONE

BITMASK DFB $80,$40,$20,510 BIT MASK PATTERNS

DFB $08,$04,$02,501

IS A BASIC PROGRAM RUNNING?

This code will allow your machine language program to
determine whether it was called by a BASIC program.

LDA $BE42 CHECK BI'S STATE
BEQ NOTRUN IN IMMEDIATE MODE
cee ELSE, BASIC PROGRAM RUNNING

SETTING UP YOUR OWN RESET VECTOR
The code below will set up a user-defined RESET handler.

LDA #>RESRTN
STA $3F2
LDA #<RESRTN
STA $3F3
EOR #SAS
STA $3F4

..

RESRTN

SET UP LSB

SET UP MSB

MAKE POWER-UP BYTE

RESET VECTOR READY
RESET HANDLER ROUTINE

7/ A/ (Y (N (¢ A (O PN (N DN UL UYL LY AL A VNG) AL AN | AL AL A\

(T Ve VI e P PR PR s PR TR .

VR T S T

(1 A A A

Iy

Using ProDOS from Assembly Language 6-65

ACTIVATE A PRINTER OR OTHER PERIPHERAL

To activate a printer or other peripheral driver under the
ProDOS BASIC Interpreter, do not modify the vectors in zero
page (CSWL/CSWH or KSWL/KSWH). Doing so will “disconnect”
the interpreter and prevent it from intercepting command lines.
Instead, store the address of the peripheral driver in BI Global
Page in the VECTOUT ($BE30) or VECTIN ($BE32) words. The
following code will start up a printer in Slot 1.

LDA $BE30 SAVE ORIGINAL CONTENTS OF VECTOUT
STA OLDVEC IN MY MEMORY SO I CAN TURN THE
LDA $BE31 PRINTER OFF WHEN I'M THRU

STA OLDVEC+1

LDA #3500 PLACE $C10@¢ IN VECTOUT

STA $BE30

LDA #$C1

STA $BE31

e BEGIN PRINTING VIA COUT
LDA OLDVEC
STA SBE30 RESTORE PREVIOUS OUTPUT VECTOR
LDA OLDVEC+1 '

STA $BE31l

e WwWww e @

12

U Vo B Ul U VsV R e

L

IR ST

1 U SV A A 4

mmmmmmrr.mmmnnmmmmmmmmmmmm

13

m

’

CHAPTER 7

CUSTOMIZING ProDOS

SYSTEM PROGRAMMING WITH ProDOS

Apple has provided a number of customizing interfaces to Pro-
DOS which allow a programmer to tailor the operation of the sys-
tem to his specific application needs. These interfaces are
considered “safe” and acceptable when working with ProDOS.

Before discussing specific system programming considerations,
it is important to understand how ProDOS uses memory and what
areas are reserved for its use versus those available for applica-
tions programs. Referring to Figure 7.1, the following areas of
memory are officially “owned” by the ProDOS Kernel: $D000-
$FFFF in the language card (primary $D000-$DFFF bank);
$BF00-$BFFF; Zero page locations $3A-$4F; and part of the
second 4K bank of the language card (starting at $D100). The rest
of this 4K bank is reserved for the QUIT eode driver and future
uses. The ProDOS Kernel also reserves portions of auxiliary
memory (128K) for future use—namely, the same locations it uses
in main memory, zero page locations $80-$FF, and locations $200-
$3FF. Apple’s future plans for these memory areas include net-
working and menu managers, so if you use them you do so at your
own risk. In a 128K machine, ProDOS currently sets up an elec-
tronic “RAM drive” volume in the auxiliary memory. At present,
this volume encompasses most of the auxiliary 64K. In the future,

7-2 Beneath Apple ProDOS

its size may be reduced to accommodate enhancements as men-
tioned above. You can use the auxiliary memory for your own
applications if you disable the /RAM device driver (see instruc-
tions later in this chapter). If the BASIC Interpreter is used, an
additional area of memory from $9600-$BEFF is allocated to its
use. $3D0-$3FF is used as a system vector area as defined by the
Apple II Reference Manual for the Ile Only.

~ Note that ProDOS routines, including the clock driver, make
heavy use of $200-$2FF, the monitor GETLN input line buffer. If
your programs use this area you should not depend upon it across
ProDOS system calls. You should also be aware of the fact that the
MLI cannot be called from memory in the auxiliary bank, and
that memory outside the area between $200 and $BEFF in the
main RAM bank may not be used for buffers passed to the MLI.

Pro DOS CAN BE TAILORED TO SUIT SPECIFIC NEEDS.

|

Eii
E S
Ei:‘!
€ d
e d
B
E o
B O
E O
A
B o
e
o
B o
oo
i
B =
o
5
o

.

\

i’

Customizing ProDOS 7-3

MAIN MEMORY AUXILIARY MEMORY

$FFFF
mm— e -
DRI://:ERES / o

$F000

ProDOS
KERNEL
$E000 —| /
$D100 QUIT CODE
$D000
1/0O ADDRESSING
$C000
$BF00
| ™ SYSTEM
| GLOBAL
$B000 u?llll r“ PAGE
$9600— $BEFF
SOEQ0 [-
$0800
SCREEN
$0400 s0400 §
$0200 ~——GETLN so200 ///////E=00
$0000 ~——STACK $0000 77777
ZERO PAGE USE: $3A—$4F l ZERO PAGE USE: $80—SFF A
.
i /4 :
ProDOS RESERVED BI /RAM AVAILABLE

Figure 71 ProDOS Memory Usage

7-4 Beneath Apple ProDOS

INSTALLING A PROGRAM BETWEEN THE BI AND ITS
BUFFERS

Once in a while it is useful to find a “safe” place in memory to put
a machine language program (a printer driver, or external com-
mand handler, perhaps) where BASIC and ProDOS will never
walk over it. If the program is less than 200 bytes long, $300 is a
good choice. For larger programs, it is usually better to “tuck” the
program in between the ProDOS BASIC Interpreter and its file
I/0 buffers. The program need not be relocatable, since the BI will
always be in the same place in memory, and the program can be
placed at a fixed location just beneath it (see Figure 5.1). More
than one program may be “tucked” in this area, but this may
require one or more of them to be relocated, depending upon the
order in which they are loaded.

To request space for a program, you must execute a call to the
BI’s buffer allocation subroutine using a vector in the BI Global
Page. You may request a buffer of any size as long as it isan even
multiple of pages (one page is 256 bytes). When called, the buffer
allocation routine relocates any open file buffers as well as its Gen-
eral Purpose Buffer downward in memory, lowering Applesoft’s
HIMEM pointer as necessary, and returns the address of the first
page in the new buffer. The new buffer will be placed directly
below $9A00. Subsequent calls to the buffer allocation routine will
cause allocations of buffers below earlier ones. The BI file buffers
will always be lower in memory than any externally allocated
buffers. When you are finished with all of the buffers you have
allocated, you may free all of them with a single call. There is no
provision for freeing individual buffers.

To allocate a buffer, invoke the following subroutine:

GBUFF LDA #4 ALLOCATE 4 PAGES (1024 BYTES)

JSR $BEFS CALL GETBUFR

BCS ERROR DID AN ERROR OCCUR?

STA BUFMSB STORE BUFFER ADDRESS MSB
LDA #0

STA BUFLSB STORE BUFFER ADDRESS LSB
RTS ALL DONE

|

gy MmN MWMMMNMNTN W W

=

@ @ W Www W W'

l-:J

)

(§ R U N ¥ N o Y o N U AN Vo O VB

e

\E

Customizing ProDOS 7-5

To free all buffers you have allocated:

FBUFFS JSR SBEFS8 CALL FREEBUFR

Note that you may allocate as many buffers as you wish using the
GBUFF subroutine, but that a single call to FBUFF'S frees all
buffers.

ADDING YOUR OWN COMMANDS TO THE ProDOS BASIC
INTERPRETER

There exists a well defined interface to allow you to write your
own command handlers for the ProDOS BASIC Interpreter. Sup-
pose, for example, that you wish to add a COPY command which
will accept an input pathname, followed by a comma and an output
pathname. You can write a handler for such a command in assem-
bly language, install the handler between the BI and its buffers
(see the previous section), and then inform the BI of its existence.
Every time the Bl receives a command line it doesn’t recognize, it
will pass it through to your handler before passing it to Applesoft.
Note that this implies that your command’s name must be differ-
ent from any existing ProDOS command name. You may not
replace or supersede an existing ProDOS command.

SCROLL UP!
_—"|PRINT OUT!
GOOD DOS!

‘ﬁ\\\y
r"’“’ﬂ%’féfz'/;({,

7-6 Beneath Apple ProDOS

To install your own command handler, place its entry point
address in the vector in the BI Global Page at $BE07 and $BEO0S.
These two bytes are the address portion of a Jump (JMP) instruc-
tion (EXTERNCMD) which normally points to a Return frqm
Subroutine (RTS) instruction within the BI. It is not a good idea to
assume that this address is pointing to an RTS since someone else’s
command handler could have been previously installed. To make
sure you do not “disconnect” an earlier installed command h.ffmdl.er
and that yours is “daisy chained” to it, save the address you find in
EXTERNCMD + 1 and branch to it from your handler if the com-
mand line passed is not your command.

Each time the BI scans a command line and cannot find the
command name in its table of valid names, it will call your rout.ine.
Your program should compare the command in the command line
with yours. The address of the command line is in VPAT.HI
($BE6C/$BE6D) in the BI Global Page. The command line con-
sists of a length byte followed by one or more ASCII characters
with their most significant bit off. If the command is not yours, '
jump to the next handler (previous contents of $BE07/$BE08) with
the carry set (SEC) to indicate the command is not yours. If the
command is yours, there are two options. If the command’s syntax
is not compatible with other ProDOS commands (i.e. it has non-
standard operands or keywords), you may immediately beglr} per-
forming the function indicated. When the program finishes, it

should store a zero in PBITS in the BI Global Page ($BE54) to
indicate no operands are to be parsed, and return (RTS) with the
carry clear (CLC). In this case, do not JMP to the next handler as
you would if the command was not yours. If, on the other hand, the
command has standard ProDOS syntax, you can use the BI's syn-
tax scanner to pick off the operands and optional keywords. To do
this, once you have identified the command as yours, store the
address of the beginning of your code which will process the com-
mand (after the syntax scan) in XTERNADDR ($BE5Q/$BE51) in
the BI Global Page, store a $00 in XCNUM ($BE53) to indicate
that this is an external command, and store the length of your
command name (less one) in XLEN ($BE52) so that the BI will
know where to start looking for operands. You should alsq setup
PBITS (two bytes of flags) in the BI Global Page to describe the
operands the Bl is likely to find on your command. If you have a
very simple command with only a pathname as an operand, you

|

b=
e}a
EIE
E 3
e
£
B
E!S
£l a
£l &
& &
& o
£
e
B
& o
.
s o
I
I
=
.

44

Customizing ProDOS 7-7

can set PBITS to $01,$00. If you want the BI to automatically pro-
vide the prefix of the current volume (default slot, drive) as well as
allow the S and D keywords, set PBITS to $01,$04. Once you have
setup XTERNADDR, XCNUM, XLEN, and PBITS, return
(RTS) to the BI with the carry clear (CLC). When the command
line has been successfully scanned, control will return to your
handler at the location you indicated in XTERNADDR. If 2 SYN-
TAX ERROR oceurs, control will not return. When your command
handler completes its tasks, it may return to the BI with an RTS
instruction (the carry here is insignificant). Your handler need not
save or restore any registers.

An example of a command handler is given in APPENDIX A.
This program installs a handler between the BI and its buffers,
and connects it to ProDOS through the the EXTERNCMD vector.
If the ProDOS user enters the command “TYPE” followed by a
pathname, the command handler reads the indicated file and
prints it on the screen.

DISABLE /RAM VOLUME FOR 128K MACHINES

If your application needs to use the additional 64K in the
Extended 80-column Card (or the alternate 64K bank in the IIe)
for its own purposes, rather than as an electronic disk drive (RAM
drive), you should disable the /RAM device driver. You might want
to do this if you plan to use the “double HIRES” graphics feature of
the Apple ITe and Il¢, for example.

The /RAM device driver is installed by the ProDOS Loader/
Relocator when the Kernel is loaded. Part of it resides in the Ker-
nel itself (from $FF00-$FF7F), and the remainder resides in aux-
iliary memory at $200-$3FF. Its address is placed in the list of
device drivers for Slot 3, Drive 2 in the System Global Page.

One way to avoid conflicts between /RAM and your application
is to BSAVE a dummy file such that its blocks will coincide with
the area of memory you will be using. If you BSAVE an 8K file to
/RAM (before any other operations on the /RAM volume), it will
fall across $2000-$3FFF, the primary HIRES buffer. If you save a
second 8K file it will fall across $4000-$5FFF, the secondary
HIRES buffer. This is the easiest way to use “double HIRES”
graphics while leaving the /RAM volume partially available for
your use as an electronic disk drive.

7-8 Beneath Apple ProDOS

If you want to totally disable the /RAM device driver, you must
remove its entry from the System Global Page device driver vector
list (DEVADRS32). You must also remove the device number for
Slot 3, Drive 2 from the online devices list (DEVLST), and reduce
the device count (DEVCNT) by one. If you plan to reinstall the
/RAM volume later, be sure to save the contents of DEVADRS32 in
a safe place so you can later restore it. Note that it is good pro-
gramming practice to leave /RAM installed upon exiting your
program so that other applications may use it. Reinstalling /RAM
erases (“formats”) the volume, so you should not reinstall it upon
entry to an application which will be reading files passed via the
/RAM volume by a previous application.

The following subroutine will remove the /RAM driver, allowing
alternate uses of the auxiliary 64K:

SKP 1
* START BY CHECKING TO SEE IF /RAM COULD BE THERE
SKP 1
LDA S$BF98
AND #S$30
CMP #S30
BNE NORAM
LDA $BF26
CMP $BF16
BNE GOTRAM®
LDA $BF27
CMP S$BF1l7
BNE GOTRAM
SEC ;
RTS
SKP 1
* SAVE OLD VECTOR
SKP 1
LDA S$BF26
STA OLDVEC
LDA $BF27
STA OLDVEC+1
LDA $BF16
STA $BF26
LDA $BF1l7
STA $BF27
SKP 1

CHECK -MACHID
ISOLATE MEMORY BITS
128K?

NO - NO AUX MEMORY

REMOVE

IF SLOT 3, DRV 1 <> DRV 2 VECTOR..
THEN IT'S INSTALLED

NORAM INDICATE NO /RAM INSTALLED

OKXIT
AND REMOVE IT
GOTRAM SAVE OLD VECTOR CONTENTS

POINT IT AT "UNINSTALLED DEV"

)

m mmmmwmmmmmwm X
) L W W W W

mmmEMPPTMTTMM

r m
L

mmemmEm
R

I

T

O Y 1 O e

(FSUR 159 vy

.

W

Tl
w!

k

Customizing ProDOS 7-9

DEVLP

GOTSLT

OLDVEC

SQUISH OUT DEVICE NUMBER FROM DEVLST
SKP 1

LDX $BF31 GET DEVCNT .

LDA §BF32,X PICK UP LAST DEVICE NUM
AND #5790 ISOLATE SLOT

CMP #$30 SLOT = 3?2

BEQ GOTSLT YES, CONTINUE

DEX

BPL DEVLP CONTINUE SEARCH BACKWARDS
BMI NORAM CAN'T FIND IT IN DEVLST
LDA $BF32+1,X GET NEXT NUMBER

STA $BF32,X AND MOVE THEM FORWARD
INX

CPX $BF31 REACHED LAST ENTRY?

BNE GOTSLT NO, LOOP

DEC $BF31 REDUCE DEVCNT BY 1

LDA #500 ZERO LAST ENTRY IN TABLE
STA $BF32,X

CLC

BCC OKXIT BRANCH ALWAYS TAKEN

SKP 1

DW © OLD VECTOR SAVEAREA

To reinstall the /RAM driver, execute this subroutine:

HIMEM

INSTALL
INSLP

ERROR

INSLP2

SKP 1

SEE IF SLOT 3 HAS A DRIVER ALREADY
SKP 1

EQU $73 PTR TO BI'S GENERAL PURPOSE BUFFER
SKP 1

LDX $BF31 GET DEVCNT

LDA $BF32,X GET A DEVNUM

AND #$70 ISOLATE SLOT

CMP #$30 SLOT 37

BEQ INSOUT YES, SKIP IT

DEX

BPL INSLP KEEP UP THE SEARCH
SKP 1

RESTORE THE DEVNUM TO THE LIST

SKP 1

LDX $BF31 GET DEVCNT AGAIN

CPX #$0D DEVICE TABLE FULL?
BNE INSLP2

e YOUR ERROR ROUTINE
LDA $BF32-1,X MOVE ALL ENTRIES DOWN
STA $BF32,X TO MAKE ROOM AT FRONT
DEX FOR A NEW ENTRY

BNE INSLP2

LDA #$B@

STA $BF32 SLOT 3, DRIVE 2 AT TOP OF LIST
INC $BF31 UPDATE DEVCNT

SKP 1

7-10 Beneath Apple ProDOS

j

§)

* NOW PUT BACK THE DEVICE DRIVER VECTOR
SKP 1
LDA OLDVEC FROM PREVIOUSLY SAVED VECTOR
STA $BF26
LDA OLDVEC+1
STA $BF27
SKP 1
* FINALLY, REFORMAT THE /RAM VOLUME
SKP 1
LDA $BF32
STA $43 DEVNUM = SLOT 3, DRIVE 2
LDA #3
STA $42 CMD = FORMAT
LDA HIMEM 512-BYTE BLOCK BUFFER
STA $44 (PAGE ALIGNED)
LDA HIMEM+1 WE CAN USE BI'S G.P. BUFFER
STA $45 (IF BI IS AROUND)
STA $C@89 SELECT L.C. FOR DRIVER
JSR RAMDRV GO FORMAT THE VOLUME
STA $C@81 SELECT MOTHERBOARD ROMS
INSOUT RTS ; AND EXIT TO CALLER
RAMDRV JMP ($BF26) <<< JUMP TO /RAM DRIVER >>>

WRITING YOUR OWN INTERPRETER

A ProDOS “Interpreter” (also known as a “System Program”) is
a machine language program which stands between the user and
the ProDOS MLI, providing a function. An interpreter may be
executed by the smart RUN command (“—"), may be invoked at
boot time, or may be executed upon leaving another ProDOS
interpreter. Interpreters are stored in SYS files on a ProDOS
volume, and are initially loaded at $2000, although they may
include code to relocate themselves elsewhere once they begin
execution. Examples of interpreters are BASIC.SYSTEM (the
“BI”), FILER, CONVERT, and EDASM.SYSTEM. According to

convention, an interpreter must be able to pass control to any other

interpreter when it exits.
When writing your own interpreter, you must be aware of these
considerations:

1. You must BSAVE your interpreter as a “SYS” type file from
location $2000. If you want your code to execute elsewhere in
the machine, you may include a front-end which relocates the
rest of the program (this is what the BI does). Normally, the
memory available to you in a 64K system includes $800-
$BEFF. If you are running in a 48K machine, the ProDOS
Kernel occupies memory from $9000-$BFFF so you are
limited to $800-$8FF'F for your program.

Customizing ProDOS 7-14

) @ 1 W W W

) Ll

lw e &) L

el L

VSR U A 14

n

\F

p T TREFRETETEREFE®RMAMOHMMAMM N T M0M N T O MWNKD
N

e b — e —— e o — i —— —— o~ — — e — e —— [— - - S —,
-— —_ - - —_ - - - - - -

i

L

2. If you want your interpreter to be automatically executed as

the first interpreter when ProDOS boots, you must name it
“xxxx.SYSTEM”, where xxxx can be any name. It must also
be the first SYS file using that naming convention to be found
in the Volume Directory of the boot diskette.

. Inorder to insure correct operation of the interrupt handler in

the ProDOS Kernel, set the stack register (S) to point to the top
of the stack page ($FF) upon entry, and do not use more than
the top three quarters of the stack. The interrupt handler
assumes that the last item on your stack is stored at $1FF,
when it makes its determination of whether or not to save part
of the contents of the stack before invoking an interrupt driver
routine.

. Assoon as your program begins execution, it should set up the

POWERUP byte in page 3 and three areas in the System
Global Page as follows.

S3F4: POWERUP byte

$BF58: BITMAP (system memory bit map)

$SBFFC: IBAKVER (minimum version of MLI acceptable)
SBFFD: IVERSION (version number of your interpreter)

When your interpreter gets control, it should first set up the
RESET vector at $3F2/$3F3 to point to its own RESET
handler and fix the POWERUP byte at $3F4 accordingly. The
POWERUP byte should be fixed even if you do not replace the
RESET handler address (unless you want to reboot on
RESET). To fix the POWERUP byte, exclusive OR the
contents of $3F3 with #3A5 and store the result at $3F4.

A subroutine for checking the system memory bit map was
given in Chapter 6. Use this to mark those areas of memory
which your program will use. Do not mark areas which may be
used for MLI buffers. By doing this, the MLI can keep a
watchful eye on the execution of your program to prevent
accidental overlay of your code with buffers. To determine
what values to use for IBAKVER and IVERSION, examine
memory in the version of ProDOS you are using for
development and note the values at SBFFE (KBAKVER) and
$BFFF (KVERSION). Assemble the values you find there as
constants into your program, and use these to initialize
IBAKVER and IVERSION.

i
f
|
*
it ‘

712 Beneath Apple ProDOS & i ™ Customizing ProDOS 7-43
F'm
5. If you wish to use 80 columns, first check the MACHID byte in l _ INSTALLING NEW PERIPHERAL DRIVERS
the System Global Page to see if 80 columns are available and '™
then call (JSR) $C300. To disable 80-column hardware, load a l fyouare writing a driver for a peripheral, such as a printer or
#$15 into the A register and call $C300. Avoid using the Apple S disk drive, you should be aware of the convgntxon§ to which
ITe and Ilc 80-column soft switches, because these will not I ProDOS ad}}ere§ When examining an.d calling drlyers. .
work for third party 80-column cards or in an Apple I or ™ If your driver is in ROM on the per}pheral card itself, it should
Apple I1 Plus.] follow the Apple II standards for peripherals as follows.
6. When your program is ready to exit, close all open files, SR FOR NON-DISK DEVICES
reinstall the /RAM driver if you disconnected it previously, ‘ ADDRESS | VALUE
and execute the following code. [S $Cs05 $38 (standard BI
E ! T requirement)
EXIT DEC $3F4 FORCE REBOOT ON RESET | $Cs07 $18 (fggsﬁfmdeﬁi)
gg‘g :gg@ ? 88% g:ELML ' E i L $Cs0B $01 (generic signature of
DW PARMS B ~ firmware cards)
SKP 1 l $Cs0C $ci (specific device signature)
PARMS DFB 4 4 PARMS Eow The device signature is made up of two nibbles. “c” defines the
DFB @ QUIT TYPE = @] class of devices as shown below. The second nibble, “i”, is a specific
Dw @ RESERVED Eo= device identifier assigned by Apple Computer, Inc.
DFB ¢ RESERVED —
oW @ RESERVED | ¢” NIBBLE | CLASS
o= $0 reserved
| $1 printer
The MLI will free any memory you have allocated in the B = $2 joystick or X-Y input device
system bit map. It will then prompt the user for a new prefix] $3 serial or parallel card
and pathname for the next interpreter, and will load it and | SN $4 modem
execute it. The code which performs these tasks is at $D100-] $5 sound or speech device
$D3FF in the secondary 4K block of the language card. It is TR $6 clock
moved by the MLI to $1000-$12F F before execution. You may ;]) $7 mass storage device
create your own quit code by replacing the three pages of code | N $8 80-column card
image in the language card if you wish.] o $9 network or bus interface
| TN JA special purpose (other)
)] o $B-$F reserved
& i 3 ProDOS makes the following special check for a clock:
B = ADDRESS | VALUE
| $Cs00 $08 (unique device signature
X for the Thunderclock)
[$Cs02 $28
| $Cs04 $58
| ~ $Cs06 $70
 J i |
E‘ .

|

i

L)

7-14 Beneath Apple ProDOS

1

|

FOR DISK DEVICES l

ADDRESS | VALUE |
$Cs01 $20 (unique disk device signature) i
$Cs03 $00 5
$Cs05 $03 |
$Cs07 $3C ;
$CsFC/D Disk capacity in blocks (non-DISK II) i
$CsFE Status bits (non-DISK II) |
1..... removable media |

.1...... interruptable device ‘

.nn number of volumes on device |

.... 1... format allowed ,

....1.. write allowed |

...1. read allowed (

....... 1 statusread allowed \

ProFILE status bits = $47 [

$CsFF $00=DISK II |
$xx = LSB of Block device driver in ROM]

for non-DISK II ($Csxx). ,

ProFILE hard disk $xx =$EA. l

$xx may not equal $FF. |

|

If your driver is in RAM (below $C000), and you are invoking it
using the BASIC Interpreter’s commands PR# A$xxxx or IN#
A$xxxx, the first byte of your code must be a CLD instruction
(3D8); otherwise, the BI will not recognize your routine as a valid
driver. If your routine is short, you can place it in the $300-$3EF
range. If it is longer, you can call the BI’s buffer allocation routine
(previously covered in this chapter) to place it between the Bl and
its buffers.

rpMrmmmmmrr_r_mmmmmmmmmmmmmmm!‘

EETTEEES

i

W W W W

s

w) W ol

w)

O U U T U TR T Y

i

Customizing ProDOS 7-16

INSTALLING AN INTERRUPT HANDLER

If you plan to use a peripheral card which supports interrupts,
you may want to write an interrupt handler for that card. You
should use the ProDOS first level interrupt handler in the Kernel
so that other cards may also service their interrupts. To do this, use
the MLI:ALLOC_INTERRUPT call to install your interrupt
handler’s entry address in the interrupt veector table within the
ProDOS System Global Page. When writing an interrupt handler,
follow these steps in the order indicated.

1. Make sure your interrupt handler is stored in main memory
between $200 and $BEFF.

2. Call the MLI with the ALLOCINTERRUPT ($40) call to
cause your routine’s entry point to be placed in the vector table.

3. Perform whatever 1/0 is necessary specific to your peripheral
to enable its interrupt generating mechanism.

When your interrupt routine is called, the first instruction
executed should be a CLD (to let ProDOS know that this is a valid
externally written routine). You should then determine whether
the interrupt which caused your routine to be invoked was indeed
from your peripheral. If it was not, return to the Kernel with the
carry flag set. If it was, service the interrupt, and upon completion, .
return to the Kernel with the carry flag clear. Your interrupt
handler need not save or restore any registers, and it may use up to
16 bytes of stack space and zero page locations $FA through $FF
(these are saved and restored by the Kernel). The Kernel assumes
that the “bottom” of the stack is at $1FF when it determines what
to save. Your application should always start the stack pointer at
$FF. Note that the Motherboard ROM is deactivated in an
interrupt handler routine (do not attempt to print via $FDED, for
example).

If you wish to remove a previously installed interrupt routine,
first disable the interrupt generation mechanism on your
peripheral card to prevent further interrupts from occurring, then
call the MLI:DEALLOCINTERRUPT function to remove your
handler from the list.

7-16 Beneath Apple ProDOS

When writing an interrupt service routine, you should minimize
the actual function performed “on the interrupt.” If you are
collecting data from a serial port which will later be written to
disk, do not write the data while in the interrupt service routine,
since this may adversely impact the performance of the program
which was executing when the interrupt occurred, or it may cause
you to “lose” subsequent interrupts while processing the first.
Instead, use the interrupt routine to fill a “circular buffer” which
is periodically dumped to disk by the interrupted program. An
example of this technique and of writing interrupt handlers in
general is given in the DUMBTERM program in APPENDIX A.

If you wish to call the MLI while in an interrupt routine, you
should take steps to allow any interrupted MLI call to complete
before using the MLI yourself (the MLI is not reentrant). Check
the MLIACTYV flag ($BF9B) in the System Global Page to see if the
MLI is active. If the MLI is not active, you may issue MLI calls

MANDLING

ol
r)

b w b w ol Wl

m m

m M m [

LU U L LU LA LA B

m m m

HL r_'_ 4’!'. vj_!__“f_!_“ i

|

L

e i

()

Customizing ProDOS 7-17

immediately. If the MLI is active, save the contents of CMDADR
($BF9C) and replace it with an address within your service
routine. Then return to the Kernel with the carry clear. When the
MLI call completes, control will be passed to you instead of the
original MLI caller. You should carefully save all registers,
perform your processing as needed, restore the registers again,
and jump to the saved contents of CMDADR to allow the original
caller to continue. Note that you can be interrupted during your
processing unless you disable interrupts. If you are not careful, a
subsequent interrupt could cause your interrupt service routine to
overwrite the saved contents of CMDADR with an address within
your own program, causing an infinite loop! It might be a good
idea to set a flag when saving CMDADR and clear it only when you
have completed all processing. Your interrupt service routine can
then check the flag and discard any interrupts which occur while
you are finishing up processing of the first interrupt.

\
® L
* /4 R : T)

(ININERKU FTpS

.

7-48 Beneath Apple ProDOS b] ™ Customizing ProDOS 7-19
Sl
DIRECT MODIFICATION OF ProDOS—A WORD OF Although ProDOS provides most of the functionality needed by
WARNING ST the BASIC or assembly language programmer, at times a custom
Making changes to your copy of ProDOS should only be R change is desirable. When making a change, weigh .its v.alue
undertaken when absolutely necessary. In the past, many third E 9 against the difficulty of reconstructing and reapplying it for later
party software packages were sold for DOS, the earlier Apple II B versions of ProDOS as they become available. Of course, if you
operating system, which patched or made wholesale changes. never plan to upgrade your version of ‘PPO.DOS this is not a
Because of the dependency these programs had on fixed locations b concern. In addition, wholesale modification of ProDOS without a
within DOS and their importance to the collective software B S clear understanding of the full implications of each change can
offering for the machine, programmers at Apple felt hampered in Erd result in an unreliable system.
their efforts to improve DOS. Bugs in DOS could only be fixed
with patches to existing code—no reassembly could be performed -
on the DOS code as this would cause critical locations to move “out E S APTPI};YING P?TCHESdTO PEODOSk. h ProDOS invol
from under” existing applications. With the introduction of P « € 1_15u,a’1 procedure 1or maxing changes to ro INVoIves
ProDOS, Apple started out fresh. Earlier shortcomings in DOS & | L papchmg the O.bJ.eCt or rpachme lqnguage.code in ProDOS. Once a
have been corrected with ProDOS and numerous enhancements | desn‘gd changfe 15 1de.:nt}f1ed, a few mstruqtmns are stored over
have been added. Hopefully, most packages written for ProDOS B e other instructions w1t.hm ProDOS to modify the program. There
will not have to depend on changing the operating system’s code - are three levels at which changes to ProDOS may be applied.
itself. In any case, be forewarned: Apple will not hesitate to B ' % ¢ New code may be written and added to ProDOS through a
reassemble the ProDOS Kernel or the BASIC Interpreter or other | “standard” interface. If this is done, as in the case of an
ProDOS components if changes are desirable, and the stated policy E = interrupt handler, for example, there need not be any ProDOS
is that programs which depend on locations or entry points which | version dependencies involved. Examples of this type of
are not published by Apple will do so at their own risk. = d modification have been given earlier in this chapter.
1 ® A patch may be applied to a ProDOS system component, such as
(J | = the Kernel or the BASIC Interpreter, directly in memory. If this
o is done, a later reboot will cause the change to “fall out” or be
QOVERICEUSTOMIZE: DSy N removed. This method is usually used to test a change before
] making it permanent.
,f‘ TR ® A patch may be made directly to the diskette containing the
I - ProDOS system component in question. Most ProDOS
| ! components are stored as SYS files and may be BLOADed,
! modified using the monitor, and BSAVEd back to diskette. If a
= ! - change is to be made to the bootstrap loader (stored in block 0 of
S the volume), a sector editor or the ZAP program given in
{] ! - APPENDIX A must be used. When applying patches to the
| BASIC.SYSTEM or PRODOS files, you can find a location
k= within the unrelocated image of the BI or the Kernel if you know
I ~ its address in the relocated and running version. To do this, refer
to Table 7.1. For example, if you wish to patch $9B7C in the BI,
l you must patch $257C after BLOADing BASIC.SYSTEM. If
) I = you wish to change $D32A in the MLI, BLOAD PRODOS and
N change $302A.
| i - e
3 I -

|

7-20 Beneath Apple ProDOS

Table 74a ProDOS Paich Locations For FILE = “PRODOS” (64K)

EXECUTION IMAGE
ADDRESS ADDRESS
BF00 4E00 (64K sytem global page image)
D000 2D00 (alternate 4K: 5900—QUIT code)
D100 2E00 (alternate 4K:5A00)
D200 2F00 (alternate 4K:5B00)
D300 3000

D400 3100

D500 3200

D600 3300

D700 3400

DR00 3500

D900 3600

DAOO 3700

DB00 3800

DCO0 3900

DD0O0 3A00

DE00 3B00

DF00 3C00

E000 3D00

E100 3E00

E200 3F00

E300 4000

E400 4100

E500 4200

E600 4300

E700 4400

ER800 4500

E900 4600

EA00 4700

EBOO 4800

EC00 4900

ED00 4A00

EE00 4B00

EF00 4C00

F000 4D00

F100 zeroed (clock code to F'142 from 5000)
F200 zeroed

F300 zeroed

F400 zeroed

F500 zeroed

F600 zeroed

F700 zeroed

F800 5200 (diskette driver)
F900 5300

FA00 5400

FB00 5500

FCO00 5600

FDO00 5700

FE00 5300

FF00 2C00 (/RAM device driver through FEF8C)

FF80 5080 (Interrupt vectors and handler,

starts at FF9B)

J

Ejii
E:irs
EfiS
=
=
E:izi
BooR
I
S
B
£ 3
EE
B g
IR
E o
Y
s
T
o
L T
LTI
LN
L T
s

Customizing ProDOS 7-24

Table 7.1b ProDOS Patch Locations For FILE = “BASIC.SYSTEM”

EXECUTION IMAGE
ADDRESS ADDRESS
9A00 2400 (BIimage)
9B00 2500

9C00 2600

9D00 2700

9E00 2800

9F00 2900

A000 2A00

A100 2B00

A200 2C00

A300 2D00

A400 2E00

A500 2F00

A600 3000

AT700 3100

AB00 3200

A900 3300

AAQ0 3400

ABO00 3500

ACO00 3600

ADO0 3700

AE00 3800

AF00 3900

B000 3A00

B100 3B00

B200 3C00

B300 3D00

B400 3E00

B500 3F00

B600 4000

B700 4100

B800 4200

B900 4300
BA0O 4400
BB00 4500
BC00 4600 .
BE00 4700 (BI Global Page image)

The patches given here are applied directly to a diskette with
ProDOS Version 1.0.1 (1 January 1984). You must reboot after
making any changes in order to cause them to take effect. Do not
makg these changes to your original ProDOS System diskette.
Modify a copy so you can “back out” any changes you make by

copying the original again.

7-22 Beneath Apple ProDOS

CHANGING THE NAME OF THE STARTUP FILE

You can change the name of the STARTUP file which the BI
executes at bootup by patching the first block of BASIC.SYSTEM
as follows.

BLOAD BASIC.SYSTEM,TSYS,A$2000
CALL -151

21ES5:05 48 45 4C 4C 4F

BSAVE BASIC.SYSTEM,TSYS,A$2000

Here we are changing the name from STARTUP to HELLO.
The first byte indicates the number of characters in the name (5)
and may be a maximum of 7 characters. Each ASCII byte should
have its most significant bit off. The Startup file may be of any
type which can be run using the “—” (Smart RUN) command.

PUT CURSOR ON COMMAND THAT CAUSED ProDOS ERROR

When you get a ProDOS error message such as “PATH NOT
FOUND” or “FILE TYPE MISMATCH” because you typed the
wrong file name or misspelled it slightly, it would be nice if
ProDOS would return the cursor on the line with your faulty
command so you could easily retype it. To make ProDOS do this
from now on, apply the following patches.

BLOAD BASIC.SYSTEM,TSYS,A$2000

CALL -151

257C:4C C@ BB

45C@:A4 25 88 88 88 84 25 2@ 22 FC 4C 3F D4
BSAVE BASIC.SYSTEM,TSYS,A$2000

NOTE: The patches described on this page are for Version 1.0.1 of ProDOS and
probably will not work with other versions.

_J |

ldi

e ey — — ——— e - ———

LA T U B
FMERI

rmomm
lal

vl w)

mm T m®EMm

n

i)

o w)l

co.
(v 7

™

in

circumvent the MLI,

Customizing ProDOS 7-23

HOW TO WRITE TO A DIRECTORY FILE

The ProDOS MLI will not allow explicit WRITEsS to a directory
file under any circumstances (it makes no difference whether the
DIR file is “locked” or not). Under normal conditions, the only
program which may modify a directory file is the MLI itself (when
CREATEing a new file, updating the INFO in an old one, or
DESTROYing one). If you wish to directly modify a directory
entry with your own program, you should follow this procedure to

1. Open the directory file using MLI:OPEN.
2. READ the block requiring update.
3. Execute the following code to find the block number.

LDA $C@8B SELECT RAM CARD

LDA S$C@8B

LDA REFNUM PICK UP REF NUM OF FILE
CLC
SBC
LSR
ROR
ROR
ROR
TAX
LDA $F3140,X GET CURRENT BLOCK NO.
STA BLKNUM

LDA $F311,X

STA BLKNUM+1

STA $C@81 SELECT MOTHERBOARD ROMS

"} MAKE IT AN OFFSET
*32 FOR INDEX INTO FCB'S

PP e

4. Use MLI:WRITE_BLOCK to write back the block.
Note that $F310 and $F311 may be version dependent locations.

NOTE: The patches described on this page are for Version 1.0.1 of ProDOS and
probably will not work with other versions.

7-24 Beneath Apple ProDOS

CREATING A NEW FILE TYPE

When you CREATE a file with the MLI, you may specify any file
type you wish. If you wish to define a new file type for your
application, pick a number between $F1 and $F8. When a CAT or
CATALOG command is issued in the BASIC Interpreter, the file
type listed will be “$Fn”. If you want to use a three letter
abbreviation instead, you must modify the table in the BI. The
patch given below is highly version dependent and will only work
for ProDOS Version 1.0.1 (1 January 1984).

The first thing to do is examine the table of file types in the Bl at
$BI9DB. This table consists of 14 entries of one byte each, giving
the ProDOS file. type number for each of the supported types. You
will have to replace one of the entries that you never use with your
own file type. The entries need not be in numerical order.
Immediately following the type table is a table of 3-byte entries
giving the names which correspond to the numeric types. This
table is in reverse order to the first and begins at $B9E9. Asan
example, suppose you wished to replace the last entry in the tables,
$19“ADB”, with $F1“ABC”.

BLOAD BASIC.SYSTEM,TSYS,A$2000
CALL -151

43E8:F1

43E9:Cl1 C2 C3

BSAVE BASIC.SYSTEM,TSYS,A$2000

Notice that $BOE8 maps to $43E8 in the unrelocated image of
BASIC.SYSTEM.

NOTE: The patches described on this page are for Version 1.0.1 of ProDOS and
probably will not work with other versions.

moeMNoMmMmY

m

-

1

LA

o e

nTEmE®RM™

i

W o W W oW W W

L

W ow w W @ @

e e e

b i

Customizing ProDOS 7-25

RECOVERING DATA FROM A DAMAGED DISK

If one of the sectors which makes up a block is damaged,
ProDOS will return with an I/0 error. If in fact the error was in
the second half of the block, the first half will be read into memory
before the I/O error occurs. However, if the error is in the first half
of the block, ProDOS will not attempt to read the second half. To
recover the second, undamaged sector of the block, the following
patch will force ProDOS to ignore any errors while reading the
first half of a block. Errors while reading the second half will still
behave normally.

BLOAD PRODOS, AS2000
CALL -151
5228:00

BSAVE PRODOS,

TSYS,

TSYS, AS2000

The above patch, while it will work properly with undamaged
blocks, is not advisable in normal use as it will fail to indicate when
errors have occurred.

USING ProDOS WITH 40-TRACK DRIVES

The device driver supplied with ProDOS supports only 35
tracks. The code can be modified easily to support third party disk
drives with 40 tracks, but there are a couple of things to consider.
The patch will apply to all drives (regardless of the number of
tracks supported) connected to Disk II or compatible controller
cards. This should cause no difficulties even if one 35-track and one
40-track drive are on the same controller card. Because you will
also want to format 40-track disks, it will be necessary to modify
FILER. The patch to FILER will apply to all disks that you
format, and will produce an error if you attempt to format a disk
on a drive supporting less than 40 tracks.

NOTE: The patches described on this page are for Version 1.0.1 of ProDOS and
probably will not work with other versions.

7-26 = Beneath Apple ProDOS

This patch modifies the ProDOS Version 1.0.1 Disk II Device
Driver to allow 320 blocks instead of the normal 280.

UNLOCK PRODOS
BLOAD PRODOS,TSYS,A$2000

CALL -151
520D:40
3DGG

BSAVE PRODOS,TSYS,A$2000
LOCK PRODOS

This patch modifies FILER* to format 40 tracks instead of 35. It
will not work on a 35-track drive.

UNLOCK FILER

BLOAD FILER,TSYS,A$2000
CALL -151

4244:40

79F4:28

3DUG

BSAVE FILER,TSYS,A$2000
LOCK FILER

*Unlike the patch to ProDQS, this patch need not be applied to the disk. You may
wish simply to make the patch and execute the program. To do this, replace 3D0G
with 2000G, and don’t BSAVE FILER. This patch works on the version of FILER
released in 1984. It does not work with some pre-release versions, and may not
work with future releases of FILER.

NOTE: The patches described on this page are for Version 1.0.1 of ProDOS and
probably will not work with other versions.

Ei's
Eij
= 3
B 1
E s
.
E]'E
= A
E 3
= =
=
B4
B 3
B3
£ 3
.
. =
|
B u
.
N
£

Customizing ProDOS 7-27

FORCING ProDOS TO LOAD IN 48K

It is possible to load the ProDOS Kernel in main RAM (rather
than in the bank switched memory or Language Card). In this
case, you cannot use the BASIC Interpreter (since it is assembled
for a fixed location which conflicts with the alternate location of
the Kernel), or EDASM.SYSTEM from the toolkit package. You
can, however, use other programs, such as the EXERCISER or
BUGBYTER. Forcing a 48K load is sometimes useful even in a
larger machine if you want to trace execution into the ProDOS
Kernel itself using BUGBYTER. Under ordinary circumstances,
as soon as the bank switched memory is enabled, the ROM monitor
disappears and BUGBYTER goes berserk! If the Kernel is in main
RAM, however, this does not occur. To force a 48K load you must
first place a “.SYSTEM” program (with type SYS) on the diskette
to be booted (make a copy of BUGBYTER called
BUGBYTER.SYSTEM). This must be the first file whose name
ends with “*.SYSTEM?” in the Volume Directory. You can then
apply the following patch and reboot.

BLOAD BUGBYTER

CREATE BUGBYTER.SYSTEM,TSYS

BSAVE BUGBYTER.SYSTEM,TSYS,A$2000,L7177
BLOAD PRODOS,TSYS,A$2000

CALL -151

23FC:A9 590

BSAVE PRODOS,TSYS,A$2000

Note that the value of $50 above is the MACHID desired (Apple
IT Plus with 48K). You may add to that the bits necessary for an
80-column card or Thunderelock if you like. You may wish to
append your own program to the BUGBYTER.SYSTEM image
before BSAVEing it so that it will be available to you once the 48K
system is loaded. You can do this by inserting a BLOAD
MYPGM,A$3D00 after the CREATE, and changing the length of
the BSAVE to accomodate BUGBYTER and your program
combined. When you boot the 48K diskette, your program will be
loaded at $3D00, immediately following BUGBYTER.

NOTE: The patches described on this page are for Version 1.0.1 of ProDOS and
probably will not work with other versions.

b ‘ |
BN
= g
1
- CHAPTER 8
3 ProDOS GLOBAL PAGES
(S
Feas [ANYONE SEEN] E 3
5N |_MY _MOUSE? J |
) - E : E
E = Readers of Beneath Apple DOS may remember that Chapter 8 of
that book was devoted to a detailed analysis of DOS program logic.
E = The contents of that chapter comprised one quarter of the book,
and represented a complete description of more than 10K of
| JHE | machine language code. Two factors have led to the approach
] taken in Beneath Apple ProDOS. First, ProDOS code is expected
| BT | to be much more volatile than that of DOS. If material similar to
Chapter 8 in Beneath Apple DOS had been published here, it would
TR have quickly become obsolete because of reassemblies of the oper-
‘ ating system components by Apple. Throughout its lifetime, DOS
| 3] : I3 was only completely reassembled once—when the change was
| made from 3.1 to 3.2 in 1979. Our book documented a form of DOS
| TRENY in which most of the instructions had not “moved” in nearly five
| years! In contrast, before Beneath Apple ProDOS was published,
 JNERY| two different versions of ProDOS were already being distrib-
[uted—1.0.1 and 1.0.2. Although the differences between them are
| TS| very minor, insertions of instructions and data have caused the
: shifting of major sections of code. Similar changes are expected in
| JNE the future.
[A second factor in the decision to shorten Chapter 8 involved the
| TS| physical size of ProDOS. The equivalent components of ProDOS,
] compared to the DOS code covered in our earlier book, occupy over
T 22K of memory. A complete treatment of this code would be a book
] in and of itself. Coupled with the increased complexity of ProDOS
| T which has resulted in longer chapters overall, as well as the pre-
] viously mentioned volatility of the code, we decided that an in-
| T d depth coverage of ProDOS program logic did not belong here.
| S

8-2 Beneath Apple ProDOS

However, recognizing the importance of this material to many
of our readers, a special supplement has been prepared that
provides a detailed description of every piece of code and data
within the major ProDOS components. It is available directly
from Quality Software. Updated editions of this supplement will
be available on a periodic basis as Apple releases new versions of
ProDOS. In addition, any errata and changes to the main body of
Beneath Apple ProDOS will be found in future supplements,
eliminating the need to buy future editions of this book.
Instructions for ordering the supplement are provided at the
end of this chapter.

BASIC INTERPRETER GLOBAL PAGE

This page of memory is rigidly defined by the ProDOS BI.
Fields given here will not move in later versions of ProDOS and
may be referenced by external, user-written programs. Future
additions to the global page may be made in areas which are
marked “Not used”.

ADDRESS LABEL CONTENTS

BE00-BE02 BILENTRY JMP to WARMDOS (BI warmstart
vector).

BE03-BE0O5 DOSCMD JMP to SYNTAX (BI command line
parse and execute).

BE06-BEO8 EXTRNCMD JMP to user-installed external
command parser.

BE09-BEOB ERROUT JMP to Bl error handler.

BEOC-BEOE PRINTERR JMP to BI error message print

routine. Place error number in

A-register.

BEOF ERRCODE ProDOS error code (also at $DE,
Applesoft ONERR code).

BE10-BE1F OUTVEC Default output vector in monitor and
for each slot (1-7).

BE20-BE2F INVEC Default input vector in monitor for
each slot (1-7).

BE30-BE31 VECTOUT Current output vector.

BE32-BE33 VECTIN Current input vector.

BE34-BE35 VDOSIO BI’s output intercept address.

y

e

|

1

1

na

(mi im

w

I

o ow w

-V V-1 V-H T VT ¥

\

L

}
|

w w w o

ProDOS Global Pages 8-3

BE36-BE37

BE38-BE3B VSYSIO

BE3C
BE3D
BE3E
BE3F
BE40
BE41

BE42

BE43
BE44
BE45
BE46
BEA47
BE48
BE49

BE4A
BE4B
BE4C

BE4D

BE4E
BE4F

BE50-BE51
BE52
BE53

$00
$01
$02
$03
$04
$05
$06
$07
$08
$09

DEFSLT
DEFDRV
PREGA
PREGX
PREGY
DTRACE

STATE

EXACTV
IFILACTV
OFILACTV
PFXACTV
DIRFLG
EDIRFLG
STRINGS

TBUFPTR
INPTR
CHRLAST

OPENCNT

EXFILE
CATFLAG

XTRNADDR
XLEN
XCNUM

=external
=IN#
=PR#
CAT
FRE
=RUN
=BRUN
=EXEC
=LLOAD
=SAVE

BI's input intercept address.

BI’s internal redirection by STATE.
Default slot.

Default drive.

A-register savearea.

X-register savearea.

Y-register savearea.

Applesoft TRACE is enabled flag
(MSB on).

Current intercept state. 0=
immediate command mode. >0 =
deferred.

EXEC file active flag (MSB on).
READ file active flag (MSB on).
WRITE file active flag (MSB on).
PREFIX read active flag (MSB on).
File being READ is a DIR file (MSB on).
End of directory flag (no longer used).
String space count used to determine
when to garbage collect.

Buffered WRITE data length.
Command line assembly length.
Previous output character (for
recursion check).

Number of files open (not counting
EXEC).

EXEC file being closed flag (MSB on).
Line type to format next in DIR file
READ.

External command handler address.
Length of command name (less one).
Number of command:

$0A =OPEN $14 =WRITE

$0B =READ $15 =APPEND
$0C =SAVE $16 =CREATE
$0D =BLOAD $17 =DELETE
$0E =BSAVE $18 =PREFIX

$0F =CHAIN $19 =RENAME
$10 =CLOSE $1A =UNLOCK
$11 =FLUSH $1B =VERIFY

$12 =NOMON $1C =CATALOG
$13 =STORE $1D =RESTORE

$1E =POSITION

) 4

8-4 Beneath Apple ProDOS SR
App |) ProDOS Global Pages 8-5
ox
BE54-BE55 PBITS Permitted command operands bits: o R BEAF-BEB3 SRENAME RENAME parameter list.
-$8000 Prefix needed. Pathname optional. == BEB4-BEC5 SSGINFO GET_FILE_INFO
$4000 Slot number only (PR# or IN#). ~ SET_FILE_INFO : ter li
$2000 Deferred command. = N BEC6-BECA SONLINE ONLINE. SET MARK " fist
$1000 File name optional. GET_MARK, SET_EOF,
$0800 If file does not exist, create it. | GET_EOF, SET_BUF, GET_BUF
$0400 T: file type permitted. QUIT tor lis ’ - ,
$0200 Second file name required. S BECB-BED0 SOPEN of'iENp;;fﬁef; i;tt
$0100 First file name required. = BEDI-BED4 SNEWLN SET_NEWLINE par:ameter list
$0080 AD: address keyword permitted. = BED5-BEDC SREAD READ, WRITE parameter list.
$0040 B: byte offset permitted. [I BEDD-BEDE SCLOSE CLOSE, FLUSH parameter iis't
$0020 E: ending address permitted. BEDF-BEF4 CCCSPARE “COPYRIGHT APPLE. 1983"
%gg(l)g Ié llength pegmitted. ; Fr = BEF5-BEF7 GETBUFR GETBUFR buffer allocation
: line number permitted. subroutine vector.
$0004 Sor D: slot/drive permitted. Er n BEF8-BEFA FREEBUFR FREEBUFR bﬁlf“fer free subroutine
ggggﬁi g: field I(Jiermitted.d ’ BEFB vector.
: record permitted. ‘ Original HIMEM MSB.
(V always permitted but ignored.) o= BEFC-BEFF Not used.
BE56-BES7 FBITS Operands found on command line. S
Same bit assignments as above. ProDOS SYSTEM GLOBAL PAGE—MLI Global Page
}nggi-%}i}]z?sgc X%?{%}«]{ gﬁxﬁ \‘;:}Eee: TR Portions (_)f this page of memory are rigidly defined by the MLI
BESD-BESE ~ VENDA E keyword value. and are ur}llkely to move in later versions of ProDOS. However,
BESF-BE60 VLNTH L keyword value. & i some portions are less stable and could change in future releases,
BE61 VSLOT S keyword value. ADDRESS LABEL CONTENTS
BE62 VDRIV D keyword value. E d
BE63-BE64 VFELD F keyword value. = BFooBRG2 ENT Jump Vectors
BE65-BE66 VRECD R keyword value.] - RY JMP to MLI.
BE67 VVOLM V keyword value (ignored). E o BF03-BF05 JSPARE Jump to system death code (via
BE68-BE69 VLINE @ keyword value. L $BFF6).
BEGA VTYPE T keyword value (in hex). E L BF06-BF08 DATETIME Jump to Date/Time routine (RTSifno
BE6B VIOSLT PR# or IN# slot number value. 3 lock).
BE6C-BE6D VPATHI1 Primary pathname buffer (address 7 . ggg%%}}??%% ‘S;{SERR g h(/)[CP 2co system error handler.
of length byte). - - SDEATH JMP to system death handler.
BE6E-BE6F VPATH2 Secondary pathname buffer & e BFOF SERR System error number.
(address of length byte). o=
BE70-BEg&4 GOSYSTEM Call the MLI using the parameter o YO SON HAS BEEN
tables which follow. | TE USING A COMPUTER S|
BES&5 SYSCALL MLI call number for this call. ‘ HE WAS 3 YEARS oﬁ\g; E EAH, HE GOT AN
BES86-BES7 SYSPARM Address of MLI parameter list for | I 1'LL BET HES A ING
this call. = GREAT TYPIST/
BES8-BESA Return from MLI call. E 1 1
BESB-BE9E BADCALL MLI error return: translate error -
code to BI error number. -
BE9F BISPARE1 Not used. Row
BEAO-BEAB SCREATE CREATE parameter list. 1
BEAC-BEAE SSGPRFX GET_PREFIX, SET_PREFIX, | <)
DESTROY parameter list. I
S

8-6 Beneath Apple ProDOS

BF10-BF11
BF12-BFF13
BF14-BF15
BF16-BF17
BF18-BF19
BF1A-BF1B
BF1C-BF1D
BF1E-BF1F
BF20-BF21
BF22-BF23
BF24-BF25
BF26-BF27

BF28-BF29
BF2A-BF2B
BF2C-BF2D
BF2E-BF2F
BF30

BF31
BF32-BF3F

BF40-BF4F
BF50-BF55

BF56-BF57
BF58-BF6F
BF70-BF71
BF72-BF73
BF74-BF75
BF76-BF77
BF78-BF79
BF7A-BF7B
BF7C-BF7D
BF7E-BF7F

BF80-BF81

BF82-BF83
BF84-BF85
BF86-BF87

BF88
BF89
BF8A

Device Information

DEVADRO1
DEVADRI11
DEVADR21
DEVADRS31
DEVADRA41
DEVADRS51
DEVADRG61
DEVADRT1
DEVADRO2
DEVADRI12
DEVADR22
DEVADR32

DEVADRA42
DEVADR52
DEVADRG62
DEVADR72
DEVNUM

DEVCNT
DEVLST

IRQXITX

TEMP
BITMAP
BUFFERI1
BUFFER2
BUFFER3
BUFFER4
BUFFER5
BUFFER6
BUFFER7
BUFFERS

Slot 0 reserved.
Slot 1, drive 1 device driver address.
Slot 2, drive 1 device driver address.
Slot 3, drive 1 device driver address.
Slot 4, drive 1 device driver address.
Slot 5, drive 1 device driver address.
Slot 6, drive 1 device driver address.
Slot 7, drive 1 device driver address.
Slot 0 reserved.

Slot 1, drive 2 device driver address.
Slot 2, drive 2 device driver address.
/RAM device driver address (need extra
64K).

Slot 4, drive 2 device driver address.
Slot 5, drive 2 device driver address.
Slot 6, drive 2 device driver address.
Slot 7, drive 2 device driver address.
Slot and drive (DSSS0000) of last
device.

Count (minus 1) of active devices.
List of active devices (slot, drive and
identification—DSSSIIII).
Copyright notice.

Switeh in language card and call IRQ
handler at $FFDS.

Temporary storage for IRQ code.
Bitmap of low 48K of memory.

Open file 1 buffer address.

Open file 2 buffer address.

Open file 3 buffer address.

Open file 4 buffer address.

Open file 5 buffer address.

Open file 6 buffer address.

Open file 7 buffer address.

Open file 8 buffer address.

interrupt Information

INTRUPT1

INTRUPT2
INTRUPT3
INTRUPT4

INTAREG
INTXREG
INTYREG

Interrupt handler address (highest
priority).

Interrupt handler address.
Interrupt handler address.
Interrupt handler address (lowest
priority).

A-register savearea.

X-register savearea.

Y-register savearea.

g

(u)

A\

MM MMM MmO @O m® N
(2

mmmmmmm

mmmmm

mmm

)

nn

F TE T VT ¥

1

-V TRV TR ¢

(al

(1SN AV S Y L | TR Y - V< N Y =¥

e

ProDOS Global Pages 8-7
ggSCB INTSREG S-register savearea.
BFSD INTPREG P-register savearea.
INTBANKID g%\l/} ID byte (ROM, RAM1, or
2).
BF8E-BF8F INTADDR Interrupt return address.
General System Info
BF90-BF91 DATE YYYYYYYM MMMDDDDD
BF92-BF93 TIME _HHHHH .MMMMMM.
BF94 LEVEL Currentfile level. '
BF95 BUBIT Backup bit.
BF96-BF97 SPARE1 Currently unused.
BF98 MACHID Machine ID byte.
00.. 0.. II
01.. 0.. I+
10.. 0... ITe
11.. 0... ITI emulation
00.. 1. Future expansion
01.. 1.. Future expansion
10.. 1. Ile
11.. 1. Future expansion
..00 Unused
.01 48K
.10 64K
.11 128K
X.. Reserved
..0. No 80-column card
.1 80-column card present
(1) (I;Io compatible clock
ompatible
BF99 SLTBYT Slot ROM map (bit oﬁ indicafgg:ll{{gﬁsent
present).
BF9A PFIXPTR Prefix flag (0 indi i i
BF9B MLIACTV MLI activffl(ag(1...c?jt.eisr1(?i?:ai(cegwe prefix)
active).
ggggBF9D gg’[\?ADR Last MLI call return address.
hon SAVE§ X—reg!ster savearea for MLI calls.
Y-register savearea for MLI calls.
Language Card Bank Switching Routines
BFA}(})FiF(‘)CF EXIT Language card entry and exit routines.
BFAA EXIT1
BFB5 EXIT2
BFB7 MLIENT1

8-8 Beneath Apple ProDOS

Interrupt Routines
BFDO0-BFF'3 Interrupt entry and exit routines.
BFDO IRQXIT
BFDF IRQXIT1
BFE2 IRQXIT2
BFE7 ROMXIT
BFEB IRQENT
Data
BFF4 BNKBYT1 Storage for byte at $£000.
BFF5 BNKBYT2 Storage for byte at $D000.
BFF6-BFFB Switch on language card and call
system death handler ($D1E4).
Version Information
BFFC IBAKVER Minimum version of Kernel needed
for this interpreter.
BFFD IVERSION Version number of this interpreter.
BFFE KBAKVER Minimum version of Kernel
compatible with this Kernel.
BFFF KVERSION Version number of this Kernel.

ORDERING THE SUPPLEMENT TO BENEATH APPLE ProDOS

Each owner of Beneath Apple ProDOS may order the latest
updated supplement. The supplement describes in detail every
piece of code and data within the major ProDOS components (see
page 8-2). To order the supplement, you must mail the coupon on
the next page directly to Quality Software (at the address on the
coupon), along with a payment of $10.00 plus shipping and
handling charges.* Your payment can be a check or bank draft in
US dollars, or your VISA or MasterCard number and expiration
date. California residents must add the appropriate sales tax (6 or
6.5%). No phone orders or CODs will be accepted.

*SHIPPING & HANDLING CHARGES
United States, Canada, and Mexico $ 2.50
All other countries (insured air mail) $10.00

mmmmMmwMmm (¥

m
of

foll]

m

nmrmrmmmM®

amw m %

w 1w B uw w w w

(N,

oo¥)

[DOURN VAVER FOVRR oy R o

1o

ProDOS Global Pages 89

@ QUALITY SOFTWARE

21601 Marilla Street
Chatsworth, CA 91311
(818) 709-1721

SUPPLEMENT COUPON

Please cut this page out of the book and mail it (not a copy) to
Quality Software. Each supplement contains a coupon for ordering
a subsequent supplement.

Please send me:
_____ Thelatest updated supplement, OR

____ The supplement that matches my version of ProDOS,
VERSION

Name
Street Address
City, State, Postal Code
Country

Supplement $10.00

(CA residents) Sales Tax
Shipping & Handling

TOTAL

Check #

OR VISA/Mastercard # Expires

Price subject to change without notice (3/85)

8-10 Beneath Apple ProDOS

Valid Coupon

A\

mmm
=

m
Ll

mamomw

W W w ww w w W

mmMmMmmMmMmMmmMmmamMwmmm

m mm

Uow W W

VO

APPENDIX A

EXAMPLE PROGRAMS

This section is intended to supply the reader with utility
programs which can be used to examine and repair diskettes, as
well as typical programming applications for ProDOS. These
programs are provided in their source form to serve as examples of
the programming necessary to interface practical programs to
ProDOS. The reader who does not know assembly language may
Ellso benefit from these programs by entering them from the

onitor in their binary form and saving them to disk for later use.
The use of diskettes is assumed, although most of the programs
will work with a hard disk or can be easily modified for this
purpose. It is recommended that, until the reader is completely
familiar with the operation of these programs, he should use them
on an “expendable” diskette. None of the programs can physically
damage a diskette, but they can, if used improperly, destroy the
data on a diskette, requiring it to be reinitialized.

Seven programs are provided:

DUMP TRACK DUMP UTILITY
This is an example of how to access the disk drive
directly through its I/O select addresses. DUMP may
be used to dump to memory any given track in its
raw, prenibblized form. This can be useful both in
understanding how disks are formatted, and in
diagnosing clobbered diskettes. DUMP will only
operate on a Disk I drive or its equivalent.

A2 Beneath Apple ProDOS

FORMAT REFORMAT A RANGE OF TRACKS
This program will initialize a single track or a range
of tracks on a diskette. FORMAT is useful in
restoring a track whose sectoring has been damaged
without reinitializing the entire diskette. FORMAT
will only operate on a Disk Il drive or its equivalent.

DISK UPDATE UTILITY

This program is the backbone of any attempt to patch
a disk directory back together. It is also useful in
examining the structure of files stored on disk and in
applying patches to files or ProDOS directly. ZAP
allows its user to read, and optionally write, any block
on a disk volume. As such, it serves as a good example
of a program which issues direct block I/0 calls to the
MLIL

MAP FREESPACE ON A VOLUME

MAP is written in BASIC and proves that direct
block I/0 can be done directly from a BASIC
program as well as from assembly language. MAP
reads the volume freespace bit map and displays a
map of freespace versus blocks in use on the screen.

FIND INDEX BLOCKS UTILITY

FIB may be used when a directory for a volume has
been destroyed. It searches every block on a volume
for what appear to be index blocks, printing the block
number location of each index block it finds: Knowing
the locations of the index blocks and employing ZAP,
the user can patch together a new directory.

TYPE COMMAND

The TYPE command may be added to the ProDOS BI
as a new command. It allows a user to type (display)
the contents of a file to the screen or a printer. TYPE
serves as an example of an external command
handler.

DUMBTERM DUMB TERMINAL PROGRAM
DUMBTERM serves as an example of programming
with interrupts. It implements a simple terminal
emulator program, using a CCS 7710 serial interface
card. Interrupts are used to fill a circular buffer,
allowing higher baud rates to be used.

ZAP

MAP

FIB

TYPE

A\

m o m

mmmmMmmMmm
B W WwWwWww ww ww W

m

mmMmmm®mm

REEEEY

ool o Wl

11

Example Programs A-3

STORING THE PROGRAMS ON DISKETTE

The enterprising programmer may wish to key in the source
code for each program into an assembler and assemble the
programs onto disk. The Apple ProDOS Assembler was used to
produce the listings presented here, and interested programmers
should consult the documentation for that assembler for more
information on the pseudo-opcodes used. For the non-assembly
language programmer, the binary object code of each program
may be entered from the monitor using the following procedure.

The assembly language listings consist of columns of
information as follows.

e The address of some object code

e The object code which should be stored there
e The statement number

o The statement itself

For example,
2000:A9 @2 36 FIB LDA #2 BLOCK = 2

indicates that the binary code “A902” should be stored at $2000
and that this is statement 36. To enter a program in the monitor,
the reader must type in each address and its corresponding object
code. The following is an example of how to enter the FIB
program.

CALL -151
2000:A9 @2
2002:8D E9 20
2005:A9 090
2007:8D EA 20

(enter the monitor)

.ostCc...

20EB:00 00
20ED:00 00
BSAVE FIB,A$2000,LSEF

|

al

‘A4 Beneath Apple ProDOS

Note that if a line (such as line 2 in FIB) has no object bytes
associated with it, it may -be ignored.-Also, never type in a four
“digit hex number, such as the ones found in FIB on lines 22
through 27 orthe “2044” on line 41—type only two digit object code
numbers.

When the program is to be run:

.BLOAD FIB
CALL -151
2000G

The BSAVE commands which must be used with the other
programs are:

BSAVE
-BSAVE
- BSAVE
BSAVE
BSAVE
BSAVE

DUMP,A$2000.,L$100
FORMAT ,A$2000,L$51C
ZAP,AS2000,LS47
FIB,A$2000,LSEF
DUMBTERM,AS$2000 ,LSF7
TYPE,A$2000,LS$1B4

A diskette containing these seven programs is available a.t a
reasonable cost directly from Quality Software, 21601 Marilla
Street, Chatsworth, CA 91311 or telephone (818) 709-1721.

DUMP—TRACK DUMP UTILITY

The DUMP program will dump any track on a diskette in its
raw, pre-nibbilized format, allowing the.user to examine the sector
address and data fields and the formatting of the track. This
allows the inquisitive reader to examine his own diskettes to better
understand the concepts presented in the preceeding chapters.
DUMP may also be used to examine some protected disks to see
how they differ from normal ones and to diagnose diskettes with
clobbered-sector address or data fields with the intention of

recovering from disk I/O errors. The DUMP program servesasan -

example of direct use of the Disk II hardware from assembly
language, with no use of ProDOS.

- — -

1w w a @

oMM NN

m m

' M T REREMTRE®MTM

-n

2 1

iz 3

{

.
-9

(0P|

o
-

'S SN Y LY o § R | <R FwO U S Vot B DU Vot

n'

Example Programs A-5 |

To use DUMP, first store the number of the track you wish
dumped at location $2003, the device number you wish to use at
location $2004 (the program defaults to slot 6, drive 1), and begin
execution at $2000. DUMP will return to the monitor after
displaying the first part of the track in hexadecimal on the screen.
The entire track image is stored, starting at $4000. For example:

BLOAD DUMP
CALL -151

(Load the DUMP program)
(Get into the monitor from BASIC)

(Now insert the diskette to be DUMPed)

2003:11 N 2000G (Store an 11 (track 17) in $2003,
N terminates the store command,

go to location $2000)

The output might look like this...

4000- D5 AA 96 AA AB AA BB AB (Start of sector address)
4008- AA AB BA DE AA E8 C@ FF

4010- 9E FF FF FF FF FF D5 AA (Start of sector data)
4018- AD AE B2 9D AC AE 96 96 (Sector data)

...€tCc...

Quite often, a sector with an I/0O error has only one bit which is in
error, either in the address or data fields. A particularly patient
programmer in some circumstances can determine the location of
the error and devise a means to correct it.

WHAT HAVE
YOU GOT A CARRY BIT!
G
)
»

r&ad

Beneath Apple ProDOS

geeo: 1
————— NEXT OBJECT FILE
2000: 2000 2
2960: 4
2000: 5
2000 6
2000 7
2000: 8
2000: 9
2000: 10
2000: 11
2000 12
2000: 13
2000: 14
2000 15
2000: 16
2000: 7
2000: 18
2000 : 20
2000: beee 22
2000: ga3c 23
2000: aas3n 24
2000 26
2000: 4000 28
2000: FCAS 29
2000: FDB3 3¢
2000: 32
2000: CgBe 34
2000: cusl 35
2000 ce82 36
2000 : cag4 37
2000: Cu86 38
2008 co8s 39
2006 : cp89 40
2009 Cu8A 41
2004¢: cesc 42
2000: CU8E 43
2004 45
2000:4C BA 20 47
2003:20 49
2004:60 50
20065:60 51
2006:00 52
20087:00 53
2008:00 54
2029:00 55
20 57

58

200E:29 70 59
2010:8D @5 20 b
2013:AA 61
2014:68 62
2015:10 @1 2018 63
2017:E8 64
2018:BD 8A C@ 65
201B:AE @5 20 66
201E:BD 89 CO 67
2021:BD 8E C@ 68

* DUMP --
NAME 1S DUMP.S.@

ORG

TRACK DUMP UTILITY.

$2000

O S 23 e 2 R TR R S RSS2 22 S S R R AR AR E R R 2

DUMP:THIS PROGRAM WILL ALLOW USER TO DUMP AN ENTIRE
TRACK IN ITS RAW FORM INTO

INPUT:

$2003
$2004

ENTRY POINT:

PROGRAMMER

e S 2 2R 222222 R E S 2R RS S SR R R R R AR AR RS

*
*
N
N
*
N
* QUTPUT:$4000
*
*
.
«
*
*

$2000

PIETER M LECHNER 5/29/84

MEMORY FOR EXAMINATION.

TRACK TO BE READ (DEFAULTS TO $048)
UNIT NUMBER (DEFAULTS TO $60)

ADDRESS OF TRACK IMAGE

*
*
*
*
*
*
*
*
*
*
*
*
*
*

* ZPAGE DEFINITIONS

PTR
AlL
A2L

EQU
EQU
EQU

50 WORK POINTER
$3C MONITOR POINTER
S$3E MONITOR POINTER

* OTHER ADDRESSES

BUFFER
DELAY
XAM

* DISK

DRVSM@
DRVSMI1
DRVSM2
DRVSM4
DRVSM6
DRVOFF
DRVON

DRVSL1
DRVRD

DRVRDM

* RECALIBRATE

ENTRY

TRACK
UNITNUM
SLOT
DESTRK
CURTRK
DELTA
FLAG

START

DRIVE1L

EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

JMp

DFB
DFB
DFB
DFB
DFB
DFB
OFB

LDA
PHA
AND
STA
TAX
PLA
BPL
INX
LDA
LDX
LDA
LDA

$4000 TRACK IMAGE AREA
$FCA8 MONITOR DELAY ROUTINE
SFDB3 MONITOR HEX DUMP SUBRTN

1/0 SELECTS

$CH8Y STEP MOTOR POSITIONS
5¢Ce8l
$CB82
5CU84
$CUB6
$C088 TURN DRIVE OFF AFTER 6 REVS
$C089 TURN DRIVE ON
SC@8A SELECT DRIVE 1
$Cesc READ DATA LATCH
$CUBE SET READ MODE
AND POSITION THE ARM TO THE DESIRED TRACK
START SKIP DATA
500 TRACK TO DUMP
$60 UNIT NUMBER TO USE
$60 SLOT NUMBER TO USE
500 DESTINATION TRACK
$00 CURRENT TRACK
500 NUMBER OF TRACKS TO MOVE
500 DIRECTION & ODD/EVEN FLAGS
UNITNUM GET UNIT NUMBER
SAVE FOR LATER
4574 GET SLOT ONLY
SLOT
PUT SLOT IN X REG
DRIVEL SELECT DRIVE 1
SELECT DRIVE 2
DRVSL1,X SELECT APPROPRIATE DRIVE
SLOT GET SLOT
DRVON , X TURN DRIVE ON
DRVRDM, X INSURE READ MODE

|
g
;!
;|

I
‘|
o
a
!
4
.
a
.

m om
i

oo
(&l

mm

o S

o W W W W

b & L L

b L

(PR PV

A VA VA VR

Example Programs

2024:20

2027:AD
292A:8D
202D:20

2030:

2030:A9
2032:85
2034:A9
2036:85
2038:A0

203A:
203A:

203A:AE
293D:BD
2040:10
2042:C9
2044:0D0
2046:BD
2049:10
2048B:C9
204D:D0
204F:BD
2052:10
2054:C9
2056:F0
2653:D0

2054:
205A:
205A:

205A:BD
205D:10
205F:91
2¢61:E6
2063:00
2065:E6
2067:1¢@
2069 1AE
206C:BD

206F:

206F:A9
2U71:85
2073:A9
2075:85
2077:A9
2079:85
207B:A9
207 5
207F:4C

2082:

2082:A9
2084:8D
2087:A9
2089:8D
208C: 20
208F:AE
2092:BD
209 D
2098:BD
209B:BD
209E:60

82

03
26
9F

51%}
090
40
21
0o

25
8C
FB
FF
F7
8C
FB
FF
EE
8C
FB
FF
F7
U5

8C
FB
30
']
E5
a1
F1
g5
88

3¢
07
2@
26
9F
as
80
82
84
86

20

20
20
20

29
Cce
203D

203D

2046

203D

204F

204F
205F

205A

205A

205A
20
ce

29

2¢
20
20
co
Cco
ce
ca

70

72
73
74

78
79
80
81
82

84
85

87
88
89
90
91
92
93
94
95
96
97
98

160

102
103
104

106
107
108
199
11¢
111
112
113
114

116

118

120
121
122
123
124
125
126

128

130
131
132
133
134
135
136
137
138
139
140

JSR

LDA
STA
JSR

* PREPARE TO

LDA
STA
LDA
STA
LDY

RECALC

TRACK
DESTRK
ARMOVE

MOVE ARM TO TRACK @

GET TRACK TO READ

GO THERE

DUMP TRACK TO MEMORY

#>BUFFER
PTR
#<BUFFER
PTR+1

#e

POINT AT DATA

* START DUMPING AT THE BEGINNING OF A SECTOR ADDRESS
* FIELD OR A SECTOR DATA FIELD

LOOP1

LOOP2

LooP3

* %

copy
* ALL.

LOOPD

LOOP4

* WHEN FINISHED,

LDX
LDA
BPL
cMp
BNE
LDA
BPL
cMp
BNE
LDA
BPL
cMP
BEQ
BNE

ONCE ALIGNED,

LDA
BPL
STA
INC
BNE
INC
BPL
LDX
LDA

LDA
STA
LDA
STA
LDA
STA
LDA
STA
JMP

SLOT
DRVRD, X
LOOP1
#SFF
LOOP1
DRVRD, X
LOOP2
#SFF
LOOP1
DRVRD, X
LOOP3
#SFF
LOOP3
LOOP4

DRVRD, X
LOOPD
(PTR) ,Y
PTR
LOOPD
PTR+1
LOOPD
SLOT
DRVOFF, X

#>BUFFER
AlL
#<BUFFER
AlL+1

WAIT FOR NEXT BYTE

AUTOSYNC?
NO, DON'T START IN MIDDLE
WAIT FOR NEXT BYTE

TWO AUTOSYNCS?
NOT YET

STILL AUTOSYNCS?
YES, WAIT FOR DATA BYTE
ELSE, START STORING DATA

BEGIN COPYING THE TRACK TO MEMORY.
AT LEAST TWICE ITS

LENGTH TO INSURE WE GET IT

WAIT FOR NEXT DATA BYTE

STORE IN MEMORY
BUMP POINTER

DONE $4000 BYTES YET?
NO, CONTINUE

TURN DRIVE OFF

DUMP SOME OF TRACK IN HEX ON SCREEN

DUMP 4000.40AF

#>BUFFER+SAF

A2L

#<BUFFER+S$AF

A2L+1
XAM

* RECALIBRATE ARM

RECALC

LDA
STA
LDA
STA
JSR
LDX
LDA
LDA
LDA
LDA
RTS

#530
CURTRK
#500
DESTRK
ARMOVE
SLOT
DRVSMO, X
DRVSM2,X
DRVSM4, X
DRVSM6 , X

EXIT VIA HEX DISPLAY
PRETENT TO BE ON TRACK 48
SCELECT TRACK 09
GO THERE

GET SLOT NUMBER
TURN ALL PHASES OFF

RETURN TO CALLER

B
A-8 Beneath Apple ProDOS |
' E
B
209F: 142 * ARM MOVE ROUTINE !
no
209F:A9 00 144 ARMOVE LDA #500 E
20A1:8D 09 20 145 STA FLAG INITIALIZE FLAG |
20A4:AD 07 20 146 LDA CURTRK GET CURRENT TRACK
26A7:38 147 SEC E 1
20A8:ED 06 20 148 SBC DESTRK SUBTRACT DESTINATION TRACK '
20AB:F@ 36 20E3 149 BEQ DONE IF EQUAL THEN EXIT ‘
20AD:B@ 04 20B3 150 BCS OK POSITIVE RESULT? YES, GO ON i
20AF:49 FF 151 EOR #SFF MAKE RESULT POSITIVE IE‘ !
20B1:69 @1 152 ADC #$01
20B3:8D @8 20 153 OK STA DELTA SAVE RESULT
20B6:2E 09 20 154 ROL FLAG SET IN/OUT FLAG lg_ |
20B9:4E 07 20 155 LSR CURTRK ON ODD OR EVEN TRACK?
20BC:2E 69 20 156 ROL FLAG PUT RESULT IN FLAG
20BF:0E 09 20 157 ASL FLAG ADJUST FOR TABLE OFFSET
20C2:AC 09 20 158 LDY FLAG GET TABLE OFFSET EE:
20C5:B9 F8 20 159 LOOP LDA TABLE,Y GET PHASE TO TURN ON
20C8:20 E4 20 160 JSR PHASE
20CB:BY F9 20 161 LDA TABLE+1,Y GET NEXT PHASE TO TURN ON
20CE:20 E4 20 162 JSR PHASE E
20D1:98 163 TYA
20D2:49 02 164 EOR #$02 ADJUST OFFSET
20D4:A8 165 TAY -
20D5:CE 08 20 166 DEC DELTA DECREMENT NUMBER OF TRACKS TO E
20D8:AD 08 20 167 LDA DELTA
20DB:D@ E8 28C5 168 BNE LOOP IF NOT DONE, DO ANOTHER
20DD:AD @6 20 169 LDA DESTRK UPDATE CURRENT TRACK WITH E;
20EG:8D 07 20 170 STA CURTRK WHERE THE ARM IS NOW
20E3:60 171 DONE RTS DONE, RETURN TO CALLER
20E4: 173 * TURN A PHASE ON, WAIT THEN TURN IT OFF E
20E4:0D @5 20 175 PHASE ORA SLOT ADD SLOT TO PHASE
20E7:AA 176 TAX
20E8:BD 81 C@ 177 LDA DRVSMI1,X TURN ON A PHASE E
20EB:20 F2 20 178 JSR WAIT WAIT FOR ARM TO SETTLE :
20EE:BD 80 C@ 179 LDA DRVSM@,X TURN OFF PHASE
20F1:60 189 RTS RETURN TO CALLER E
20F2: 182 * 2¢ MILLISECOND DELAY ROUTINE
20F2:A9 56 184 WAIT LDA #$56 WAIT ABOUT 20 MILLISECONDS EE:
20F4:20 A8 FC 185 JSR DELAY
20F7:60 186 RTS RETURN TO CALLER
20F8: 188 * PHASE TABLE EZ
20F8:02 04 06 66 190 TABLE DFB $02,504,506,500
20FC:06 04 02 00 191 DFB $06,504,502,500 !i}
3C AlL 3E A2L 209F ARMOVE 4060 BUFFER !L
2087 CURTRK FCA8 DELAY 2068 DELTA 2006 DESTRK -
20E3 DONE 2018 DRIVEL C@88 DRVOFF C@89 DRVON
C@8C DRVRD C@BE DRVRDM C@8A DRVSL1 C@86 DRVSM@ .
C@81 DRVSM1 C@82 DRVSM2 C@84 DRVSM4 C@86 DRVSM6 E_
22060 ENTRY 2069 FLAG 293D LOOP1 2046 LOOP2
204F LOOP3 20C5 LOOP 205SF LOOP4 205A LOOPD
20B3 OK 20E4 PHASE @6 PTR 2082 RECALC
2065 SLOT 208A START 20F8 TABLE 2603 TRACK E:
2004 UNITNUM 20F2 WAIT FDB3 XAM
#%* SUCCESSFUL ASSEMBLY := NO ERRORS

meomoI
U

V

Li'

"r

TR TR TR TR TR TR).

) W W W W

W

!

bl W W s

Example Programs A9

FORMAT—REFORMAT A RANGE OF TRACKS

FORMAT can be used to selectively format a single track, a
range of tracks or an entire diskette. While it is primarily meant to
be educational, it can assist in repairing damaged diskettes. For
example, if a single sector was damaged, it could be repaired by
FORMATting the particular track on which it resides. To avoid
losing data, all other sectors on the track should be read and copied
to another diskette prior to reFORMAT¢ting. After FORMAT is
run, they can be copied back to the repaired diskette and data can
be written to the previously damaged sector.

Note that FORMAT has very limited error handling
capabilities; in addition, it may not work well on drives that are out
of adjustment (too fast or slow). The method used to do the
formatting, that of building an image of the track in memory and
then writing that image to the diskette, is similar to the method
used by “nibble” copy programs. -

To run FORMAT, store the starting track number at location
$2003, the ending track number at location $2004, the volume
number at location $2005, and the device number at location
$2006, then begin execution at $2000. FORMAT will return to the
monitor upon completion. If a track cannot be formatted for some
reason (eg. physical damage etc.), an error will be indicated. For
example:

BLOAD FORMAT
CALL -151

(Load the FORMAT program)
(Get into the monitor from BASIC)

(Now insert the diskette to be FORM ATted)

2003:11 11 FE 60 N 2000G © (Store an 11 (track 17) in $2003,
store an 11 in $2004, store an FE
(volume 254) 1in $20¢5, store .a 6@
(slot 6 drive 1) in $2006, N
terminates the store command, go to
location $2000)

A-10 Beneath Apple ProDOS

The output might look like this:

FORMATTING TRACK 22

WARNING: FORMAT will destroy existing data on the diskette
in the indicated drive without allowing the user an opportunity to
abort the program. Be sure the diskette in the drive is the one you

wish to FORMAT.

NOW T
A HIGH

HATS
BIT!

wW

L]

mETTMOMMEEMETMENMOHMMMMMEOEMMTN N MW

W

TR TR TR TR+

]

) (a

K

0000 : 1% FORMAT -- FORMAT RANGE OF TRACKS.
----- NEXT OBJECT FILE NAME IS FORMAT.¢ :E
2000 2000 2 ORG $200¢
2@@@ 4 Khkkhhkhkkkkkhkkkkkk kA Xk Ak Ak kR Rk kAR AR Ak Ak Ak kk kAN KRk Ak kX k k& k&
2000: 5 * {:B
2000: 6 * FORMAT: THIS PROGRAM WILL INITIALIZE A RANGE OF *
2000 7 TRACKS WITH ANY VOLUME NUMBER DESIRED. *
2000: g * * . i
2000 9 * INPUT: $2063 = FIRST TRACK TO BE INITIALIZED * o
2000 10 * DEFAULT ($00) *
2000 11 * $2004 = LAST TRACK TO BE INITILIZED *
2000 12 * DEFAULT ($22) *
2000: 13 * $2005 = VOLUME NUMBER *
2000: 14 * DEFAULT ($FE) *
2000: 15 * $2606 = UNIT NUMBER *
2000: 16 * DEFAULT ($60) *
2000: 17 * * |
2000: 18 * ENTRY POINT: $2000 * i
2000: 19 * * I
2000: 26 * PROGRAMMER: PIETER LECHNER 5/19/84 * !
2000: 21 * * X
zggg; 22 LERE R R R RS R R R R R R R R R I R R .
i B
2000: 24 * ZPAGE DEFINITIONS f Lj
2000: 0000 26 PTR EQU $@ WORK POINTER [
2000: 003C 27 Al EQU $3C MONITOR POINTERS T |
2000: G@3E 28 A2 EQU $3E | —
2000: 0042 29 A4 EQU $42
|
2000: 31 * MONITOR ROUTINES E.I __l
2000: FCl0 33 BS EQU $FC10 BACKSPACE I
2000: FC58 34 HOME EQU $FC58 CLEAR SCREEN = -
2000: FCA8 35 DELAY EQU SFCA8 DELAY ROUTINE E' ‘_.'
2000: FCB4 36 NXTA4 EQU SFCB4 INCREMENT POINTERS (A4/Al
2000: FCBA 37 NXTAl EQU SFCBA INCREMENT POINTER (Al) - B
2000: FDED 38 COUT EQU $FDED CHARACTER OUTPUT E‘ i 1
2000: FDDA 39 PRBYTE EQU SFDDA HEX OUTPUT —
2000: FE2C 40 MOVE EQU SFE2C MOVE ROUTINE]
|
’ e
——T TRNNAN.,

Example Programs A-11

2Udé:

2080:
2000
20d¢:
2090
2000
2000
2008
2800
2000
2300
208
2000
2000:

2004
2090 :4C 37

2003:3
2004:2
2005 F
2066:06

2037

2007:206 F7
2U8A:AD 06
2000:48
200E:29 7¢
201¢:3D D6
2013:AA
2014:68
2015:10 dl
20171
241381
201B:AE D6
201:8BD 89
2021:BD 8k
2424:30 8C

2627:20 79
202A:AD 93
2020130 DY
2030:208 26

2433

2¥33:2 38
20306 33
2639 o7

283C:A9 ¢S5
2¢3t:30 Ck
2441:A9 CB
2043:38D D2
2046:2Y 24
2348:38L D3
204B: 38

204C:aD D2
204F:E9 44
2051 :
2654
2057:k
2959:
205C:
225k :
2062:20 83
2065:20 9F
2068:20 C9

22
2¢

24

2013

Ce
&)
Cu
22
24
24
22

21
2¢
24
24
24
24

24

ER
G2
93
14
95
Y6
97
98
99
180
1yt
142
103
104
145
16
le7
108
189
110
111

*ODIOK 1

DRV SMY
DRVEML

URVON
ORVSL1
DRVSL 2
URVRD
DRVR
DRVREH
DRVIWKM

* FORMAT

FORMAT

STKRK
ETRK
VOLNUM
UNITNUM

* RECALIBRATE

ENTRY

DRIVEL

* BUILD

LOGPA

ANOTHER

By
LU
LQU

U sLLECSTS

[N

PROGEAM

orp
UFD
UFRB
UEB

JSR
LUA
PHA
AND
STA
TAX
PLA
BPL
INX
LDA
LOX
LDA
LDA
LOA

JSR
LDA
STA
J5R

FRACK

JSR
LA
5TA
LDA
STA
LA
STA
LUA
STA
s5EC
LDA
sHO
S5TA
LDA
5BC
5TA
INC
J5R
J5R
JER
JSR

ENTRY

udd
522
o

3

5
ARM TO

SCREEN
UNTTNUM

#3570
S5LOT

DRIVEL

DRVSLL, X
SLOT
DRVON, X
DRVRDM, X
DRVRO, X

RECALC
STRK

DESTRK
ARMOVE

IMAGEL IN

FILLDATA
STRK
TRACK
#5095
RETRYCNT
#>END
CURLND

CEND
CUREND+1

CUREND
#2 IMAGE
LENGTH
CUREND+1
IMAGE
LENGTH+1
LENCTH

FINDSTART

BLDLGAP]L
BLOTRK
FIXTRK

THE

PosITIONS

Sluk

MOTOR

DRIVE
DRIVE 2
ATA LATCH
L UATA LATCH
READ MODE
SET wWRITH MobD

SHIP UVER DATA
TARTING TRACK
ING TRACK
VOLUME NUMBER
UNIT NUMBER

DESITRED TRACK

CLEAR SCREEN/DISPLAY MESSAGE
GET UNIT NUMBER
SAVE FOR LATER
GET SLOT ONLY
SLOT IN X REG
WHICH DRIVE
DRIVE 1

PUT
TO USE

CHECK

APPROPRIATE DRIVE
SLOT

TURN DRIVE ON

INSURE READ MODE

RECALIBRATE
GET STARTING

ARM
TRACK

GO THERE

MEMORY

FILL DATA AREA WITH $96'S

INITIALIZE TRACK NUMBER

INITIALIZE KETRY COUNT

5AVE CURRENT LENGTH
OF SECTOR IMAGE

CuMPUTE
CURRENT

LENGIH ot
TOR IMAGE

COMPUTE START OF TRACK IMAGE
BUILD GAPl (128 BYTES)

BUILD TRACK IMAGE IN MEMORY
UPDATE ADDRESS INFO

A12 Beneath Apple ProDOS

2068B:

206B:20
206E:20
2071:B0¢
2073:20
2076:90
2078:38
2079:AD
207C:E9
207E:8D
2081:AD
2084:E9
2086:8D
2689:CE

208C:10
208E:

208E:A9
2090:D0
2092:A9
2094:20
2097:60

2098:EE
209B:AD
209E:CD
20A1:F0
20A3:B0
2@A5:8D
20A8:20
20AB:4C

20AE:

20AE:AE
20B1:BD
20B4:60

20B5:

20B5:A9
20B7:85
20B9:AD
20BC:85
20BE:AC
20C1:AE
2Q9C4:38
20C5:BD
20C8:BD
20CB: 30
20CD:A9
20CF:9D
20D2:DD

20D5:EA .

20D6:4C
26D9:49
2@DB:EA
2@0DC:EA
20DD:4C
20EQ:48
20E1:68
20E2:B1
20E4:C9
20E6:980
20EB:EA
20E9:9D
20EC:DD
2QEF:C8"

@6
B5
1F

20

@2
02
’2%
13

D7
D7
a4
02
@9
D9
96
68

D6
88

a9
og
D5
g1
D4
D6

8D
8E
30
FF
8F
8C

E@
80

e
80
Fl

8D
8C

23
20
2092

2098
24

24
24

24

24
204B

2094

23

24

24

20
20A5
20AE

24

22

20

24
co

24

24
24

ce
ce
20FD

co
Co

20

20-

20D9

ce
ce

113

115
116
117
118
119
120
121
122
123
124
125
126

127
128

130

132
133
134
135
136

138
139
148
141
142
143
144
145

147

149
150
151

153

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
17¢
171
172
173
174
175

176

177
178
179
180
181
182

* INITIALIZE TRACK

JSR
JSR
BCS
JSR
BCC
SEC
LDA
SBC
STA
LDA
SBC
STA

DEC
BPL

PRTRK
WRITE
ERROR1
VERIFY
NEXT

CUREND
#502
CUREND
CUREND+1
#5500
CUREND+1
RETRYENT
LoopPA

* ERROR OCCURED

LDA
BNE
LDA
JSR
RTS

ERROR1
ERR2

NEXT INC
LDA
cMP
BEQ
BCS
STA
JSR
JMP

LASTONE

* WHEN DONE,
FINISH LDX
LDA
RTS

#5062
ERR2
#501
ERRHDL

TRACK
TRACK
ETRK
LASTONE
FINISH
DESTRK
ARMOVE
ANOTHER

EXIT

SLOT
DRVOFF ,X

*- WRITE MEMORY TO DISK

WRITE LDA
STA
LDA
STA
LDY
LDX
SEC
LDA
LDA
BMI
LDA
STA
CMP
NOP
JMP
EOR
NOP
NOP

ASYNC

JMP .

LOOP1 PHA
PLA
LDA
CcMP
BCC
NOP
STA
CcMP
INY

LOOP2.

WRIT

#500
PTR
START+1
PTR+1
START
SLOT

DRVWR, X
DRVRDM, X
WPERR®
#SEF
DRVWRM, X
DRVRD, X

LOOP1
#5809

WRIT

(PTR) ,Y
#5860
ASYNC

DRVWR, X
DRVRD,X.

PRINT TRACK NUMBER
WRITE A TRACK

WRITE PROTECT ERROR
VERIFY THE TRACK

IF OK DO ANOTHER
ELSE ADJUST GAP SIZE

DECREMENT RETRY COUNT
IF OK TRY AGAIN

PRINT ERROR MESSAGE
EXIT PROGRAM

INCREMENT TRACK NUMBER
COMPARE WITH LAST TRACK TO DO
IF EQUAL DO LAST ONE

IF DONE THEN EXIT PROGRAM

GO TO DESIRED TRACK
GO BACK AND DO ANOTHER

GET SLOT
TURN DRIVE OFF
EXIT PROGRAM

POINT AT START OF DATA

ASSUME ERROR

CHECK WRITE PROTECT STATUS

WRITE 1 $FF

TURN HIGH BIT ON

DELAY EXTRA 8 CYCLES

GET BYTE TO WRITE

IS IT “SYNC" BYTE

YES, THEN MAKE ADJUSTMENT:
WRITE A BYTE

INCREMENT OFFSET

n

b W W W W Wl

m mmmmMmMmmmmmemMm M m

H

m m m

p®mm® MMM M

b)) W e

T VT e T O

Example Programs

A13

20F0:
20F2:
20F4:
20F6:
20F9:
2QFC:
2QFD:

DO
E6
10
BD
BD
18
60

20FE:

20FE:

2100
2102
2104
2106

A9
185
A9
185
:AQ

2108:

2108:
210B:
210E:

211@

2112:
2114:
2117:

2119
211B

AE
BD

:CY
D@
BD
10
:C9
:1DO

211D:
211D:

211D:
2120:
2122:
2124:
2126:
2128:
212A:
212C:
212E:
2138:

BD
1¢
91
E6
D@
E6

c9
D@
60

2131:

2131:
2134:
2137:
213A:

20
20
20
60

213B:

213B:
213C:
213E:
2140:
2142:
2144:
2146:
2148:
214A:
214C:
214E:
2151:
2154:

8E C@
8C C¢

8C Co

FE 20
Fl 21
39 22

20EQ

20E2

2108

210B

2114

21¢B

211D

211D

211D

183
184
185
186
187
188
189

191
193
194
195

196
197

199

201
202
203
204
205
206
207
208
209

211
212

214
215
216
217
218
219
220
221
222
223

225

227
228
229
230

232

234
235
236
237
238
239
240
241
242
243
244
245
246

BNE LOOP1
INC PTR+1
BPL LooP2
LDA DRVRDM, X
LDA DRVRD,X
CLC

WPERR RTS

* PREPARE TO

DUMP LDA #5060
STA PTR
LDA #9540
STA PTR+1
LDY #e

INCREMENT POINTER

PUT IN READ MODE

DUMP TRACK TO MEMORY

POINT AT DATA

* START DUMPING AS SOON AS TWO SYNC BYTES FOUND

LDX SLOT
LOOP3 LDA DRVRD, X
BPL LOOP3
CcMP #SFF
BNE LOOP3
LOoOP4 LDA DRVRD,X
BPL LOOP4
cMp #SFF
BNE Loor3

* ONCE ALIGNED,

WAIT FOR NEXT BYTE

AUTOSYNC?
NO, DON'T START YET
WAIT FOR NEXT BYTE

TWO AUTOSYNCS?
NOT YET

BEGIN COPYING THE TRACK TO MEMORY.

* COPY ENOUGH TO INSURE WE GET IT ALL

LOOPD LbAa DRVRD, X
BPL LOOPD

LOOPS STA (PTR) ,Y
INC PTR
BNE LoopD
INC PTR+1
LDA PTR+1
CMP #5608
BNE LooPD
RTS

* READ SECTOR ZERO TO VERIFY

VERIFY JSR DUMP
JSR SETUP
JSR COMPARE
RTS

* FILL DATA AREA WITH $96'S

FILLDATA CLC
LDA #>DATA
STA Al
ADC #>DATALTH
STA A2
LDA #<DATA
STA Al+l
ADC #<DATALTH
STA A2+1
LDA #596
STA BYTE
JSR FILL
RTS

WAIT FOR NEXT DATA BYTE

STORE IN MEMORY
BUMP POINTER

DONE $2000 BYTES YET?

NO, CONTINUE

FORMATTING
DUMP TRACK TO MEMORY

CHECK WHAT WE JUST WROTE

SET Al TO DATA START

SET Al TO DATA END

INDICATE FILL BYTE
CALL FILL ROUTINE

A-14

Beneath Apple ProDOS

2155:

2155:A8
2157:AD
215a:91
215C:28
215F: 90
2161:60

2162:

2162:A0
2164:AD
2167:02
2168:2E
216B:88
216C:10
216E:8D

2171:38
2172:A9
2174:ED
2177:8D
217A:A9
217C:ED
217F:8D
2182:60

2183:

2183:18
2184:AD
2187:85
2189:69
218B:85
218D:AD
2190:85
2192:69
2194:85
2196:A9
2198:8D
219B:20
219E:60

219F:

219F:AD
21A2:85
21A4:AD
21A7:85
21A9:A5
21aB:85
21AD:AS5
21AF:85
21B1:A9
21B3:8D
21B6:A0
21B8:A9
21BA:85
21BC:A9
21BE:85
21C0B:28
21C3:CE
21C6:10
21C8:60

2o
CF
3C
BA
Fé6

@3
Do

Fo9
Do

8¢
D@
D4
7F
D1
D5

D2
3E
D3
3F
3C
42
3D
43
gF
CcC
90
40
3C
23
3D
2C
ccC
Fo

24

FC

24
24

24

24
24

24
24

24

24

24
21

24

24

24

FE
24

2157

2167

21B8

248 *

256 FILL
251 Loop

252
253
254
255

257 * COMPUTE

259 FINDSTART

260
261 MORE
262

263
264
265

267
268
269
270
271
272
273
274

276

278
279
280
281
282
283
284
285
286
287
288
289
290

292

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
31le
311
312

FILL MEMORY WITH A CONSTANT

LDY #500
LDA BYTE
STA (Al) ,Y
JSR NXTAl
BCC LOOP
RTS

START OF

LDY #503
LDA LENGTH
ASL A

ROL LENGTH+1
DEY

BPL MORE
STA LENGTH
SEC

LDA #580
SBC LENGTH
STA START
LDA #STF
SBC LENGTH+1
STA START+1
RTS

* BUILD GAPl

BLDGAPL

CLC
LDA
STA
ADC
STA
LDA
STA
ADC
STA
LDA
STA
JSR
RTS

* BUILD TRACK

BLDTRK

MORE2

i
i
LDA CUREND ‘
STA A2 SET A2 TO SECTOR IMAGE END i
LDA CUREND+1 | i
STA A2+1 p—
LDA Al SET A4 TO CURRENT POSITION
STA A4 IN TRACK IMAGE - .
LDA Al+l l!g [|
STA A4+l [
LDA #$0F SET COUNT TO 16
STA COUNT X
LDY #$00 CLEAR Y FOR MOVE ROUTINE E . B
LDA #>IMAGE |
STA Al SET Al TO SECTOR IMAGE START)
LDA #<IMAGE E P
STA Al+l -]
JSR MOVE MOVE SECTOR IMAGE TO TRACK IMAGE J
DEC COUNT DECREMENT COUNT . .
BPL MORE2 LOOP UNTIL WE HAVE 16 SECTORS E T 1
RTS . l —
l! [|
] —
!! [P |
} el
K =
B il
e —

TRACK IMAGE

INITIALIZE OFFSET

GET BYTE TO USE

STORE A BYTE

CALL MONITOR INCREMENT
LOOP UNTIL DONE

MULTIPLY LENGTH BY 16

SUBTRACT IT FROM $7F80
TO FIND START

AT START OF TRACK IMAGE

START+1
Al+1l
#500
A2+1
#S7F
BYTE
FILL

SET Al TO START

SET A2 TO START + $80

USE $7F FOR SYNC BYTE

CALL FILL ROUTINE

IMAGE USING SECTOR IMAGE

YR YR ™)

mmommmwTTMREMMNEN N MW

m m m m

m m m

o, W W W W W W

b (wl L

) lm

Example Programs A-15

21C9:

21C9:A9
21CB:8D
21CE:AD
21D1:85
21D3:AD
21D6:85
21D8:A9
21DA:85
21DC:A9
21DE:85
21EQ:20
21E3:20
21E6:EE
21E9:AD
21EC:C9
21EE:D@
21F0:60

21F1l:
21F1:
21F1l:

21F1:A9
21F3:85
21F5:A9
21F7:85
21F9:A9
21FB:85
21FD:A9
21FF:85
2201:20
2284:A5
2206:85
2208:A5
220A:85
22@C:AD
220@F:85
2211:AD
2214:85
2216:A9
2218:85
221A:A9
221C:85
221E:20
2221:60

2222:

2222:A0
2224:A2
2226:20
2229:B0
222B:B1
222D:DD
2230:D0
2232:CA
2233:10
2235:20
2238:60

2239:

2239:A0
223B:B1
223D:09
223F:D1
2241:D0
2243:20
2246:90

7F
3F
22

a0
@2
BA
@D
3C
DD
F2

F1
BA

[J%]
3C
80

87
B4
F3

24
24

24

22

24

24

22

FC

24

FC

21EQ

2238

2224

2226

224A

223B

314

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332

334
335
336

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

362

364
365
366
367
368
369
370
371
372
373
374

376

378
379
380
381
382
383
384

* FIX ADDRESS INFORMATION IN
FIXTRK LDA #560

STA SECTOR

LDA START

STA Al

LDA START+1

STA Al+l

LDA #5600

STA A2

LDA #$80

STA A2+1
AGAIN JSR POSITION

JSR CMPADD

INC SECTOR

LDA SECTOR

CcMpP #510

BNE AGAIN

RTS
* SET POINTERS FOR VERIFY ROU
* ON EXIT: Al > 1ST ADDRESS F
* A4 > 1ST ADDRESS F
SETUP LDA #s00

STA Al

LDA #540

STA Al+1l

LDA #5500

STA A2

LDA #560

STA A2+1

JSR POSITION

LDA Al

STA A4

LDA Al+l

STA Ad+]

LDA START

STA Al

LDA START+1

STA Al+l

LDA #SFE

STA A2

LDA #STF

STA A2+1

JSR POSITION

RTS

* LOCATE AN ADDRESS FIELD

POSITION LDY #5600
POS2 LDX #5062
POS3 JSR NXTAL
BCS DONE
LDA (Al) ,Y
CMP TABLE, X
BNE POS2
DEX
BPL POS3
JSR NXTAL
DONE RTS
* COMPARE TWO AREAS OF MEMORY
COMPARE LDY #5060
LOCOPC LDA (Al) ,Y
ORA #580
CMP (A4) ,Y
BNE MISMATCH
JSR NXTA4
BCC LOOPC

TRACK IMAGE

START WITH SECTOR LERO

SET Al TO TRACK IMAGE START

SET A2 TO $8000

POSITION TO ADDRESS INFO
UPDATE ADDRESS INFO

NEXT SECTOR

DONE ALL 16 YET?
IF NOT DO ANOTHER

TINE
IELD 1IN
IELD IN

TRACK IMAGE
LIVE DATA FROM DISK

SET Al TO $4000

SET A2 TG $6004d

LOCATE 1ST ADDRESS FIELD

SET A4 TO POSITION FOUND

SET Al TO START OF TRACK IMAGE

SET A2 TO $7FFE

LOCATE 1ST ADDRESS FIELD

INITIALIZE OFFSET
INITIALIZE COUNT
INCREMENT POINTER

IF PAST DATA THEN EXIT
GET A BYTE

CHECK IT IN TABLE

NOT THERE, THEN TRY AGAIN
FOUND ONE, COUNT IT

GO UNTIL WE HAVE THREE
POINT ONE PAST

INITIALIZE OFFSET

GET A BYTE (TRACK IMAGE)
TURN 7F'S TO FF'S
COMPARE WITH DISK IMAGE

EXIT ON MISMATCH
INCREMENT BOTH POINTERS
LOOP UNTIL DONE

(i

A-16 Beneath Apple ProDOS Example-Programs A-47

m

”

=
-
2248:18 385 CLC INDICATE SUCCESS l
2249:60 386 RTS X 22CC:CE DB 24 455 DEC DELTA DECREMENT NUMBER OF TRACKS
224A:38 387 MISMATCH SEC INDICATE ERROR E 5 22CF:AD DB 24 456 LDA DELTA
224B:60 388 RTS | 22D2:D6 E8 22BC 457 BNE LOOP6 IF NOT DONE, DO ANOTHER
22D4:AD D9 24 458 LDA DESTRK UPDATE CURRENT TRACK WITH
224C: 399 * COMPUTE ADDRESS FIELD INFORMATION AND STORE IN TRACK IMAGE E | 5 22D7:8D DA 24 459 STA CURTRK WHERE THE ARM IS NOW
22DA: 680 460 DONE2 RTS DONE, RETURN TO CALLER
224C:AD 95 20 392 CMPADD LDA VOLNUM GET VOLUME NUMBER ’
%245‘:25 6B 22 395 JSR COMPUTE COMPgTE AND STOgE IT 1 ﬂ 22pB: 462 * TURN A PHASE ON, WAIT THEN TURN IT OFF
252:AD D7 24 391 LDA TRACK GET CURRENT TRACK E
2255:208 6B 22 395 JSR COMPUTE COMPUTE AND STORE IT ! 22DB:6D D6 24 464 PHASE ORA SLOT ADD SLOT TO PHASE
2258:AD D8 24 396 LDA SECTOR GET CURRENT SECTOR 22DE:AA 465 TAX
2258:26 6B 22 397 JSR COMPUTE g 220F:BD 81 C@ 466 LDA DRVSM1,X TURN ON A PHASE
225E:AD @5 20 398 LDA VOLNUM E '_i 22E2:20 E9 22 467 JSR . WAIT WAIT FOR ‘ARM TO SETTLE
2261:4D D7 24 399 EOR TRACK 22E5:BD 80 C@ 468 LDA DRVSM@,X TURN OFF PHASE
2264:4D D8 24 400 EOR SECTOR GET CHECKSUM 22E8:68 469 RTS RETURN TO CALLER
2267:2@¢ 6B 22 401 JSR COMPUTE E 3
226A:60 402 RTS . 22E9: 471 * 20 MILLISECOND DELAY ROUTINE
226B: 404 * NIBBLIZE A BYTE 22E9:A9 56 473 WAIT LDA #556 WAIT 'ABOUT 28-MILLISECONDS
'E 22EB:20 A8 FC 474 JSR DELAY
226B:48 466 COMPUTE PHA SAVE A-REGISTER E ; 22EE: 60 475 RTS .RETURN TO CALLER
226C:4A 407 LSR A @ABCDEFG H
226D:09 AA 408 ORA #SAA 1A1C1ELG E ”3 22EF: : 477 * PHASE TABLE
409 STA (Al) ,Y STORE IT 1
410 PLA ABCDEFGH ! 22EF:02 04 86 86 479 PTABLE DFB $02,584,5066,500
411 ORA #$AA 1B1D1F1H 22F3:06 @4 62 6¢ 480 DFB $06,504,502,500
2274:C8 412 INY -
2275:91 3C 413 STA {(al),Y STORE IT E FE 22F7: 482 * CLEAR SCREEN AND DISPLAY MESSAGE
2277:C8 414 INY
2278:60 415 RTS 22F7:20 58 FC 484 SCREEN JSR HOME CLEAR. SCREEN
E | E 22FA:A9 EO@ 485 LDA #>MESSAGE
2279: 417 * RECALIBRATE DISK ARM 1 22FC:85 00 486 STA PTR POINT AT MESSAGE
: 22FE:A9 24 487 LDA #<MESSAGE
2279:29 30 419 RECALC LDA #5360 PRETEND TO BE ON TRACK 48 f 2300:85 01 488 STA PTR+1
227B:8D DA 24 420 STA CURTRK E | E 2302:20 33 23 489 JSR PRINT PRINT IT
227E:A9 00 421 LDA #5060 SELECT TRACK 00 | 2305:68 ‘490 RTS
2280:8D D9 24 422 STA DESTRK |
2283:20 96 22 423 JSR ARMOVE GO THERE E |‘ h 2306: 492 * PRINT TRACK NUMBER
2286:AE D6 24 424 LDX SLOT GET SLOT NUMBER]
2289:BD 8¢ C@ 425 LDA DRVSM@, X TURN ALL PHASES OFF { 2306 :AD D7.24 494 PRTRK LDA TRACK GET TRACK NUMBER
228C:BD 82 C@ 426 LDA DRVSM2,X | . 2309:20 DA FD 495 JSR . PRBYTE PRINT IT
228F:BD 84 CO 427 LDA DRVSM4,X E] 230C:20 16 FC 496 JSR BS
2292:BD 86 CO@ 428 LDA DRVSM6,X L= 230F:20 10 FC 497 JSR BS MOVE CURSOR BACK
2295:60 429 RTS RETURN TO CALLER] 2312:69 498 RTS
2296: 431 * ARM MOVE ROUTINE E | E 2313: 5@@ * ERROR HANDLER
2296:A9 00 433 ARMOVE LDA #5080 I 2313:C9 o1 5@2 ERRHDL CMP #S01 IS IT ERROR #1
2298:8D DC 24 434 STA FLAG INITIALIZE FLAG - — 2315:08 @A 2321 563 BNE SECOND NO, THEN ASSUME #2
229B:AD DA 24 435 LDA CURTRK GET CURRENT TRACK E | _! 2317:A9 F3 504 LDA #>MESSAGEL
229E:38 436 SEC 2319:85 0@ 505 STA PTR POINT AT MESSAGE 1
229F:ED D9 24 437 SBC DESTRK SUBTRACT DESTINATION TRACK i 231B:A9 24 506 LDA #<MESSAGE1l
22A2:F@ 36 22DA 438 BEQ DONE2 IF EQUAL THEN EXIT - 231D:85 @1 507 STA PTR+1
22A4:B@ 04 22AA 439 BCS OK POSITIVE RESULT? YES, GO ON E ! ___.., 231F:D0 08 2329 508 BNE PRINTIT ALWAYS TAKEN
22A6:49 FF 440 EOR #SFF MAKE RESULT POSITIVE l 2321:A9 @9 569 SECOND LDA #>MESSAGE2
22A8:69 01 441 ADC 501 _ 2323:85 0@ 510 STA PTR POINT AT MESSAGE 2
22AA:8D DB 24 442 OK STA DELTA SAVE RESULT E | 2325:A9 25 511 LDA #<MESSAGE2
22AD:2E DC 24 443 ROL FLAG SET IN/OUT FLAG et 2327:85 @1 512 STA PTR+1
22B@:4E DA 24 444 LSR CURTRK ON ODD OR EVEN TRACK? I 2329:2¢ 33 23 513 PRINTIT JSR . PRINT PRINT IT
22B3:2E DC 24 445 ROL FLAG PUT RESULT IN FLAG — 232C:AE D6 24 514 LDX . SLOT GET SLOT
22B6:0E DC 24 446 ASL FLAG ADJUST FOR TABLE OFFSET E (I | 232F:BD 88 C@ 515 LDA DRVOFF,X TURN DRIVE OFF
22B9:AC DC 24 447 LDY FLAG GET TABLE OFFSET — 2332:6¢ " 516 RTS EXIT PROGRAM
22BC:B9 EF 22 448 LOOP6 LDA PTABLE, Y GET PHASE TO TURN ON l
22BF:20 DB 22 449 JSR PHASE E -
22C2:B9 F@ 22 450 LDA PTABLE+1,Y GET NEXT PHASE TO TURN ON 1 J
22C5:20 DB 22 451 JSR PHASE
22C8:98 452 TYA
22C9:49 @2 453 EOR #502 ADJUST OFFSET E, T
22CB:A8 454 TAY I i
S
'

A-18 Beneath Apple ProDOS

2333 518 * PRINT ROUTINE

2333:A0 60 526 PRINT LDY #5600 INITIALIZE OFFSET
2335:B1 08 521 CHAR LDA. (PTR) ,Y GET CHARACTER
2337:F0 @6 233F 522 BEQ TERMINATE IF ZERO THEN EXIT
2339:289 ED FD 523 JSR couT PRINT CHARACTER
233c:c8 524 INY

233D:D@ F6 2335 525 BNE CHAR DO ANOTHER
233F:60 526 TERMINATE RTS

2340 528 * DATA AREA

2340 2340 530 IMAGE EQU *

2340:D5 AA 96 532 HEADER1 DFB $D5,S$AA, 596

2343 2343 534 ADDRESS EQU *

2343:AA AA 535 VoL DFB SAA, SAA

2345:AA AA 536 TRK DFB $AA, SAA

2347:AA AA 537 SEC DFB SAA,SAA

2349:AA AA 538 CHK DFB SAA,SAA

234B:DE AA EB 54¢ TRAILERl DFB $DE,SAA,SEB

234E:7F 7F 7F 542 GAP2 DFB $7F,S$7F,$7F

2351:7F 7F 7F 543 DFB $7F,$7F,S7F

2354:D5 AA AD 545 HEADER2 DFB $D5,S$AA,SAD

2357 @856 547 DATA DS §56

23AD 0100 548 DS $le@

242D 9801 549 DS $01

24AE 24AD 550 DATAEND EQU *-1

24AE @156 551 DATALTH EQU DATAEND-DATA

24AE:DE AA EB 553 TRAILER2 DFB SDE,SAA,SEB

24B1:7F 7F 7F 555 GAP3 DFB $7F,$7F,STF

24B4:7F 7F 7F 556 DFB $7F,$7F,S7F

24B7:7F 7F 7F 557 DFB $7F,$7F,$7F

24BA:7F 7F 7F 558 DFB $7F,$7F,S7F

24BD:7F 7F 7F 559 DFB $7F,$7F,S7F

24CQ:7F 7F 7F 560 DFB $7F,$7F,S7F

24C3:7F 7F 7F 561 DFB $7F,S7F,S7F

24C6:7F 7F 7F 562 DFB $7F,$7F,S7F

24C9:7F 7F 7F 563 DFB $7F,$7F,87F

24CC 24CB 564 END EQU *-1

24CC gl18cC 565 LEN EQU END-IMAGE+1

24CC:00 00 567 COUNT DFB $00,500

24CE: 00 568 RETRYCNT DFB S00

24CF:00 569 BYTE DFB $0¢

24D0:00 00 578 LENGTH DFB $00,500

24D2:00 @@ 571 CUREND DFB $00.,500

24D4:00 00 572 START DFB $69,$00

24D6:60 573 SLOT DFB $60

24D7:00 574 TRACK DFB $60

24D8:00 575 SECTOR DFB $@0

24D9:00 576 DESTRK DFB $09¢ DESTINATION TRACK
24DA: 00 577 CURTRK DFB $00 CURRENT TRACK
24DB: 00 578 DELTA DFB $09 NUMBER OF TRACKS TO MOVE
24DC: 00 579 FLAG DFB S0 DIRECTION & ODD/EVEN FLAGS
24DD:96 AA D5 580 TABLE DFB $96,SAA,SD5S

24E0: 582 MSB ON

24E0:C6 CF D2 CD 583 MESSAGE ASC 'FORMATTING TRACK '
24F2:00 584 DFB Soe

24F3:8D 585 MESSAGE1L DFB $8D

24F4:D7 D2 C9 D4 586 ASC '"WRITE PROTECT ERROR'
25@7:87 g8 587 DFB $87,500

i w W W W W W W

la

llﬁ

a

rrrrr®rrmrmrErmMMTMH M MMMMODMMHOMMNMT NN NN

1

i L

o

PR Y VU YR TR VR Y

™

.

=

Example Programs A-19

2509:8D 588 MESSAGE2 DFB $8D

250A:D5 CE- Cl C2 589 ASC 'UNABLE TO FORMAT'
251A:87 00 5960 DFB $87,500

251C: 591 MSB OFF

ZAP—DISK UPDATE UTILITY

The next step up the ladder from DUMP and FORMAT is
accessing data on the diskette at the block level. The ZAP program
allows its user to specify a block number to be read into memory.
The user can then make changes to the image of the block in
memory, and subsequently use ZAP to write the modified image
back over the block on disk. ZAP is particularly useful when it is
necessary to patch up a damaged directory. Its use in this regard
will be covered in more detail when FIB is explained.

To use ZAP, store the number of the block you wish to access at
$2007 and $2008. Store the least significant byte of the number in
$2007 and the most significant byte in $2008. For example, the key
block of the Volume Directory may be read by entering 2007:02 00.
$2009 should be initialized with either $80 to indicate that a sector
is to be read into memory, or $81 to ask that memory be written out
to the block on the disk. You may also specify the disk drive to be
used (slot 6, drive 1 is assumed) by storing a hex value of $s0 at
$2004, where “s” is the slot to be used. If you wish to access drive 2
for a given slot, turn on the most significant bit in $2004 (e.g. slot 6,
drive 2 would be 2004:E0). An example to illustrate the use of ZAP
follows.

CALL -151 (Get into the monitor)
BLOAD ZAP (Load the ZAP program)

(Now insert the diskette to be ZAPped)

2007:02 00 80 N 2000G (Store a 2 (key block of the Volume
directory) in $2007/8 and $80 (read
block) at $28¢9. N ends the store command
and 2000G runs ZAP.)

A-20 Beneath Apple ProDOS

The output might look like this...

1000~ 00 00 @3 00 FA 55 53 45
-1008~ 52 53 2E 44 49 53 4B @0
1010~ 00 00 00 00 00 00 00.00
1918~ 00 00 00 00 00 00 00 00

oo 0 Eet:(: e e 0

In the example above, if the byte at offset 6 (the second character
of the volume name, “USERS.DISK”) is to be changed to “0”, the

following would be entered.

1006:4F
2009:81 N 2000G

(Change +$06 to $4F ("0"))
(Change ZAP to write mode and do it)

Note that ZAP will remember the previous valuesin $2004
through $2009. If something is wrong with-the block to be read or
written (an I/O error, perhaps), ZAP will print an error message of
the form:

RC=2B

A return code of $2B, in this case, means that the diskette was
write protected and a write operation was attempted. Other error
~ codes are $27 (I/0 error), and $28 (no device connected). Refer to
. the documentation on READ_BLOCK and WRITE_BLOCK in
Chapter 6 for more information on these errors.

NAME IS ZAP.S.0

2000: 2000 1 ORG $2000
2000 2 MSB ON

Zgag 4 *k**'*tiit*t*tt****t**ﬁ*k***t**t***t**k’(t**t*ik!t****t**t
2000 5 * *
2000 6 * ZAP: THIS PROGRAM WILL 'ALLOW ITS USER TO READ/WRITE *
2000 7% INDIVIDUAL BLOCKS FROM/TO THE DISKETTE :
2000 8 *

2000 9 * INPUT: $2084 = UNIT NUMBER (DSSS00@0) *
2000 10 * DEFAULTS TO SLOT 6, DRIVE 1 ($60) *
2000 11 * (SLOT 6, DRIVE 2 IS SEOQ) *
2000 12 * $2005/6 = ADDRESS OF AREA IN MEMORY TO BE *
2000 13 * READ/WRITTEN. *
2000 14 * DEFAULTS TO $1000 *
2000 15 * $28067/8 = BLOCK NUMBER TO BE READ/WRITTEN *
2000 16 * DEFAULTS TO $6060 *

A\

i

m MmN ™

m

m
i

m
ln)

L L UL

4@4

-y

L

FIF

IR I

n' lal w

lm

Example Programs A-24

2000:
2000:
2000:
2000:
2000:
2009:
2000:
2000:
20800:
2000:

2000:

2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000;

2000:
2000:
2003:

20083:
2004:
2005:
2007:
2009:

200A:

200A:
200D:
2¢10:
2013:
2014:
2016:

2018:

2018:
2019:
201B:
201E:
2020:
2023:
2025:
A9

2028

202A:
202D:
202E:

2031:

2631:
:AD
2935:
2037:
2039:
203B:
203E:
2040:
2042:
2044:

2032

a3
60
1)
00
80

48
A9
20
A9
20
A9
29

29
68
4C

18

85
69
85
AD
85
69
85
4C

"2

10
2o

89

00

20
19

87
ED
D2
ED
Cc3
ED
BD
ED

DA

20

20
20
BF

FD

FD

FD

FD

FD

20

29

FD

093C
6@3D
PU3E
Ga3F
BFOO
FDED
FDDA
FDB3

2031

41

43

45
46
47
48
49

51

53
54
55
56
57
58

60

AlL
AlH
A2L
A2H
MLI
couT
PRBYTE
XAM

ZAP

RWBLP

BUFF

OPER

START

op

EXIT

$2009 = OPERATION TO BE PERFORMED: *

$8¢ = READ BLOCK *

$81 = WRITE BLOCK *

DEFAULTS TO READ BLOCK. *

*

ENTRY POINT: $2000 *

*

PROGRAMMER: DON D WORTH - 2/25/84 *

*

LR R R S R R 22222222 2]

FIXED LOCATIONS WE NEED

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$3C MONITOR POINTERS

$3D

$3E

$3F

SBF @@ MACHINE LANGUAGE INTERFACE
$FDED MONITOR PRINT VECTOR

S$FDDA MONITOR PRINT HEX BYTE
SFDB3 MONITOR HEX DUMP SUBRTN

ENTRY POINT, JUMP AROUND PARMS

JMP

START BR AROUND DATA

MLI READ/WRITE BLOCK PARAMETER LIST

DFB
DFB
DW
DW
DFB

START OF CODE,

LDA
STA
JSR
DFB
DW

BCC

$03 PARM COUNT = 3

$60 UNIT NUMBER

$1060 BUFFER ADDRESS

$0000 BLOCK NUMBER

$80@ OPERATION TO BE PERFORMED

CALL MLI

OPER PASS OPERATION CODE
oP

MLI CALL MLI

$00

RWBLP

EXIT ALL WENT WELL???

IF ERROR OCCURS, PRINT MESSAGE

PHA
LDA
JSR
LDA
JSR
LDA
JSR
LDA
JSR
PLA
JMP

WHEN FINISHED,

CLC
LDA
STA
ADC
STA
LDA
STA
ADC
STA
JMP

; SAVE ERROR CODE
#587 BEEP THE SPEAKER
couT
4R
cour
§'C
CouT
$'=
couTt

PRINT THE "“RC="

PRBYTE PRINT THE HEX VALUE

DUMP SOME OF BLOCK IN HEX

BUFF
AlL
#SAF
A2L
BUFF+1
AlH

#0

A2H
XAM

DUMP $20006-$20B7

EXIT VIA HEX DISPLAY

A-22 Beneath Apple ProDOS

MAP—MAP FREESPACE ON A VOLUME

The MAP program is written in BASIC and calls a tiny
assembly language subroutine to read blocks from a ProDOS
volume. It first reads the Volume Directory key block to determine
the length and location of the Volume Bit Map. It then reads the bit
map and prints a map of the volume’s freespace on the screen.

To run MAP against a disk volume, first LOAD the program into
BASIC, place the disk to be MAPped in slot 6, drive 1, and then
RUN the program. The output from such a run might look like
this:

FREESPACE MAP FOR VOLUME /USERS.DISK/

vguuuuuuguuuuuuyyuuuyyuuuuuuuuuuuuuuuuUU
gguiuluuuguuyuuuuguuuyuuouuuuuuuuuuuuuuuu
ugguuuyguuuuuuyuuoguuuuuuyuyuuuuouuuuuuuuu
uguuuuuuuuuuuuuuuyuuuuuuuyyyuuuuuuUUUUU
guuuuuuuuuyyuuuuuuuuouyoouuulUUUU. e e e e e

USED BLOCK . = FREE BLOCK

(o]
]

BLOCKS USED: 193 BLOCKS FREE: 87

The MAP program first reads a short machine language
program from data statements and pokes it into memory at $300.
The machine language program is as follows.

0300: PHA ; SAVE REGISTERS UPON ENTRY

@301: TYA
0302: PHA

2303: TXA

0304: PHA

09305: JSR $BF00 CALL MLI

0308: DFB $80 READ BLOCK CALL
3309: DW $315 PARAMETERS AT $315
@30B: STA $314 SAVE RETURN CODE
@30E: PLA ; RESTORE REGISTERS
930F: TAX

9310: PLA

g311: TAY

9312: PLA

.

L\

mmMmMmMmmMMNwmmmm

m
el i W w W

mmermMmTMTTMMM

1

=

1

Eb

W W W W

TR

™

.

I

ll;
‘ '

¢

i

Example Programs A-23

2313: RTS ; AND RETURN TO BASIC PROGRAM

B314: DFB S99 RETURN CODE SAVED HERE

#315: DFB $@3 3 PARAMETERS

@316: DFB $60 SLOT 6, DRIVE 1

9317: DW $4000 BLOCK BUFFER IS AT $4000

2319: DW "] BLOCK NUMBER FILLED IN BY BASIC PGM

MAP then calls the subroutine (see lines 1000-1020) to read the
Volume Directory key block (BN = 2). It obtains the length of the
volume name from +4 (eliminating the $F0 entry type), and peeks
the volume name and prints it on the screen from +5 in the buffer.
If the total number of blocks on the volume (+41/42) is not 280,
then the message “NOT A PRODOS DISKETTE” is printed.
Otherwise, the first block of the Volume Bit Map is read. A loop is
then entered (lines 365-440) where each binary bit which is one in
the bit map is counted and printed as a “.” (free) and each that is
zero is counted and printed as a “U” (in use). The totals for used
and free blocks are then printed and the program exits. If an
error oceurs, it is printed in decimal and the program aborts
execution. Possible errors are 39 (I/O error) and 40 (no device
connected).

MAP will not currently work for volumes with more or less than
280 blocks but this can be easily changed by the reader.

AR,

DO | TURN
YOU ON BOYS?

|

h\
Tl

A-24 Beneath Apple ProDOS Example Programs - A-25

\\
F 1

FIB—FIND INDEX BLOCK UTILITY

10 Rem ' From time to time one of your diskettes will develop an I/O error

20 REM THIS PROGRAM PRINTS A MAP OF , smack in the middle of a directory. When this occurs, any attempt

30 REM A PRODOS DISKETTE VOLUME. E X :i _] 'b db h . N 1 . I O

40 REM

B0 R PROGRAMMER: DON D WORTH 2/22/84 to use the files described by that directory will resu @m anl/

R isaa, 138,72,32,8,151, 128,215, 141.2 . o ERROR message from ProDOS. Generally, when this happens, the
4 2,3,19 9,104,168 |

7S DATA 10496, 6,3,96 i data stored in the files on the diskette is still lntact only the

8 REM !

99 REM POKE BLOCK READ SUBROUTINE INTO MEMORY = o pointers to the files are gone. If the data absolutely must be

T35 oEM ! d, a knowledgeable Appl truct th

100 3= 768: ReM sp-ADOR oF sumRoUTIN | recovered, a knowledgeable Apple user can reconstruct the

100 TEoR 102 eh o sm e pot S AT $4000 = i ' directory from scratch. Doing this involves finding the index

12¢ READ X: POKE I

1,x B blocks for each file, and then using ZAP to patch a directory entry
into the Volume Directory for each file which is found. FIBisa
utility which will scan a disk volume for index blocks. Although it

136 NEXT I
140 POKE I,6: POKE I + 1,BF / 256
150 BN = SB + 25:RC = SB + 20

g we TRCRCE B

;Zg Eg:E B;“Zw i TOUUNE DIRECTORY KEX BLOCK 1O FIND THE BIT WAP = ! g may flag some block§ v‘{hlch are not index blocks as belng'such, it
216 GOSUB 1008 ! will never miss a valid index block. Therefore, after running FIB,
346 REM PRINT THE VOLUME NAME | the programmer must use ZAP to examine each block printed by
200 L PEEK (BF + 4) - 248 | FIB to see if it is really an index block. Additionally, FIB will find

265 HOME : PRINT "FREESPACE MAP FOR VOLUME /";
270 FOR I = 1 TO L

280 PRINT CHR$ (PEEK (BF + I + 4));

298 NEXT I

300 PRINT “/": PRINT

every index block image on the volume, even some which were for
files which have since been deleted. Since it is difficult to-
determine which files are valid and which are old deleted files, it is

mmomm
FIR IR

31e ; .
320 REM LOCATE AND READ BIT MAP BLOCK | usually necessary to restore all the files and copy them to another
36 REM . :
39 Ir PEEK (BF 4 41) + PECK (BF 4 42) + 256 < > 260 THEN PRINT Chs | E diskette, and later delete the duplicate or unwanted ones.
350 POKE BN, PEEK (5p » 367: boxp D | 1, PEEK (BF + 4) ! To run FIB,.51mp1y load the program and start exec_utl‘on at
369 cosus 1409 I $2000. FIB will print the block number of each block it finds
363 REM PRINT BIT AP ‘ which bears a resemblance to an index block. For example:
Jerane JE
= + BF . .
39 'ron 1 -'1'T0s : i N CALL -151 (Get into the monitor)
410 BRINT "un;i0 = s 1 oor PRINTTLTISE < B4l Goto 420 - BLOAD FIB (Load the FIB program)
4 = *
453 XNEX: I ? |]
442 wem E' - (Now insert the disk to be scanned into Slot 6, Drive 1)
443 REM FINISH UP !
444 REM . . N " EI ”5‘ . .
{5 RN D TR SIAT g meek | mer v = 2000G (Run the FIB program on this diskette)
ND
1660 REM E‘ "
1062 ngm N0 R BLOCK EROM DISK e The output might look like this...
19 —
laﬁ s:‘LLPSE,!:IK (RC) = @ THEN RETURN E? a
1620 PRINT "I/0 ERROR = "; PEEK (RC); CHR$ (7): END | BLK=00@8 BLK=0@99
- BLK=@@27. BLK=0@AF

L T

i BLK=0028 BLK=0@B1

E; “ BLK=0@3C BLK=00B4

= e BLK=006F BLK=0@B7

o BLK=0@97
= s
\
S

A26 Beneath Apple ProDOS

Here 11 possible files were found. Of course, if some of the lost
files were seedlings, they will not be represented here (seedlings
are very difficult to locate once their directory entry is gone). And
if some files were tree files, then three or more of the above block
numbers could refer to index blocks for a single file. Also, if only
one of several directories for a volume is damaged, some of the
block numbers given may refer to files whose directory entries are
still intact. If, after running FIB, you get an error message (RC =
xx, see ZAP errors), you may need to reformat the offending track.
Divide the block number by eight to determine which track has the
error. An alternative is to use ZAP to copy all blocks without
errors to another formatted disk and write zeroes on the blocks
corresponding to I/O errors. In this way you can preserve
undamaged blocks which are on the same track with damaged
ones.

In the example above, ZAP should now be used to read block 8.
At +$00 and +$100 are the LSB and MSB of the block number for
the first data block of the file (assuming this is not the master
index block for a tree file). This block can be read and examined to
try to identify the file and its type. Usually a BASIC program can
be identified (even though it is stored in tokenized form) from the
text strings contained in the PRINT statements. An ASCII
conversion chart (see page 16 in the Apple II Reference Manual for
- ITe Only) can be used to decode these character strings. Straight
TXT type files will also contain ASCII text, with each line
separated from the others with $0Ds (carriage returns). BIN type
files are the hardest to identify and recover since their original
address and length attributes were lost along with the directory
entry. If you cannot identify a file, assume it is BAS (Applesoft
BASIC). If this assumption turns out to be incorrect, you can
always go back and ZAP the file type in the directory to try
something else. Given below is an example ZAP to the Volume
Directory to create an entry for the file whose index block is BLK =
0008. This ZAP assumes that the Volume Directory itself was lost

THATS ABIT
RIDICULOUS!

)

2 - —

qmmmm}mmmmmmmmmmmmmmmmmmu

O T T I T T T TR TR T TR TR T TR T TR T TR TR "R T |

w

[[
- im Amm

-

Example Programs A-27

and that you are starting the entire volume from scratch. Do not
perform this patch to a diskette which is only partially
damaged as you will wipe out the remainder of the valid
directory entries in the process.

CALL -151
BLOAD ZAP

(insert disk to be ZAPped)

1000:00 N 1001<1000.11FEM (Zero entire block of memory)
1000:00 00 @3 00 F5 46 49 58 (Store a dummy Volume Directory
1008:55 50 header for volume /FIXUP)
1020:90 00 C3 27 0D 00 0@ 06

1028:00 18 @1

1¢2B:24 46 49 4C 45 (Make sapling entry for "FILE")
193B:FC (file is type BAS)

193C:028 0@ (key block is 8)

1040:00 xx 00 (EOF mark, see below)

1049:E3 (full access "unlocked")
104A:01 @8 (AUX _TYPE = $801 for BAS file)
1050:02 00 (header pointer)

2007:02 00 81 N 2036G (write new block image out as

first volume Directory block)

The “xx” above should be set to the number of non-zero block
numbers found in the index block as a first cut at the end of file
mark. If garbage is loaded at the end of the program, try a smaller
number. You may be able to deduce the true EOF by examining
the program image on disk. Remember that AUX_TYPE will be
different for different file types. See Chapter 4 for more
information.

As soon as the entry is created using the above procedure, the file
should be immediately copied to another diskette. Do not attempt
to use the file in place because the Volume Bit Map has not been
updated and several other fields in the directory entry have been
omitted. Also, you do not want to risk damaging other “lost” files
on the disk. Repeat the above process for each index block found by
FIB. As each file is recovered, it may be RENAMEJ to its original
name on the new diskette. Once all the files have been copied to

. another disk, and successfully tested, the damaged disk may be

re-initialized.

.----------

A-28. Beneath Apple ProDOS

NEXT OBJECT FILE NAME IS FIB.S.¢

2000 1 ORG $2060
2 MSB ON
4 AR Ak Ak kAR A R AR R AR AR R AR Ak Ak kA kh kA kA AR R kA Ak Ak Ak Ak R kA Ak A XK
5 * *
6 * FIB: THIS PROGRAM SCANS AN ENTIRE VOLUME, SEARCHING *
7 * FOR WHAT APPEAR TO BE INDEX BLOCKS AND PRINTS *
8 * THE BLOCK NUMBER OF EACH ONE IT FINDS. FIB WILL*
9 * WORK FOR ANY SIZED VOLUME. SLOT 6, DRIVE 1 IS *
10 * ASSUMED. *
11 * *
12 * INPUT: NONE *
13 * *
14 * ENTRY POINT: $2000 *
15 * *
16 * PROGRAMMER: DON D WORTH - 2/25/84 ¥
* *

}g P2 2022 2R R R R R R R R RS R R RS RS SR RS AR RS
20 * FIXED LOCATIONS WE NEED

2000: 08048 22 PTR EQU $48 WORK POINTER

2000: 1000 23 BUFFER EQU slo0e BLOCK BUFFER

2000: BF @@ 24 MLI EQU $SBFO@ MACHINE LANGUAGE INTERFACE

2000: FDED 25 COUT EQU $FDED MONITOR PRINT VECTOR

2000: FDDA 26 PRBYTE EQU SFDDA . MONITOR PRINT HEX BYTE

2008: FDB3 27 XAM EQU $FDB3 MONITOR HEX DUMP SUBRTN

2000: 29 * OFFSETS INTO VOL DIR HEADER

2000: 1929 31 TOTBLK EQU. $1@29

2000: 1027 32 BITMAP EQU $1@27

200¢: 34 * ENTRY POINT, READ VOLUME DIRECTORY HEADER

2000:A9 02 36 FIB LDA #2 BLOCK = 2

2002:8D E9 20 37 STA BLOCK

2005:A9 00 38 LDA 40

2007:8D EA 20 39 STA BLOCK+1

200A:20 97 20 40 JSR READ READ VOL DIR BLOCK

208D:B@ 35 2044 41 BCS EXIT IF ERROR, GIVE UP RIGHT NOW

20@F:AD 29 1@ 42 LDA TOTBLK

2012:8D ED 2@ 43 STA LAST

2015:AD 2A 18 44 LDA TOTBLK+1

2018:8D EE. 20 45 STA LAST+l

201B:4A 46 LSR A COMPUTE TOTBLK/4@96

201C:4A 47 LSR A

201D:4A 48 LSR A

201E:4A 49 LSR A FOR NUM BIT MAP BLOCKS

201F:38 50 SEC ; AND ADD ONE TO THAT

2020:6D 27 10 51 ADC BITMAP

2¢23:8D E9 20 52 STA BLOCK

2026:8D EB 20 53 STA FIRST

2029:29 00 54 LDA 40

202B:6D 28 10 55 ADC BITMAP+1

2¢2E:8D EA 20 56 STA BLOCK+1l POINT PAST THE BITMAP

2031:8D EC 20 57 STA FIRST+1

2034: 59 * SEE IF WE ARE AT END OF VOLUME

2034:AD EA 20 61 NEWBLK LDA BLOCK+l WHEN WE REACH LAST BLOCK +1

2037:CD EE 20 62 CMP LAST+1

203A:D@ 13 204F 63 BNE READIT

203C:AD E9 20 64 LDA BLOCK

293F:CD ED 20 65 CMP LAST

2042:00 0B 204F 66 BNE READIT

2044:60 67 EXIT RTS EXIT TO SYSTEM

2045:EE E9 20 68 NXTBLK INC BLOCK INCREMENT BLOCK COUNT

2048:D¢ -EA 2034 69 BNE NEWBLK

204A:EE EA 20 70 INC = BLOCK+1

204D:D0@ ES 2034 71 BNE NEWBLK AND CONTINUE LOOP

h\

mn m
"7

f §

m m

im

mrTEAMTE MMM ATTMETMN

I

Ww W w

w oW

w w

1
'

&/

—

T T

l:l

™

Example Programs A-29

204F:

204F:20
2052:B0

2054:A0
2056:B9
29059:19
205C: D@
20SE:C8
205SF:DO
2061:F0

2063:A0
2065:B9
2068:D0
206A:B9
206D:F@
206F:A2
2071:28
2074:90
2076:A2
2078:20
207B:B@
207D:C8
207E:D@

2080@:20
2083:4C

2086:

2086 :B9
2089:pD
208C:90
268E:D@
2090 :B9
2693:DD
2096:60

2097:

2097:20
209A:80
209B:ES
209D:B@
209F:60

20A0:

20A0:48
20A1:A9
20A3:20
20A6:A9
20A8:20
20AB:A9
20AD: 20
20B@:A9
20B2:20
206B5:68
20B6:20
20B9:A9
20BB: 20

20BE:

20BE:A9
20C0:20
20C3:A9
20C5:28

97
Fl

00
a0
ae
a5

BE
45

o
EC
28
26
"]
EB

20
g1

87
ED
D2
ED
C3
ED
BD
ED

DA
AQ
ED

c2
ED
cC
ED

29
2045

16
2063
2056
2045

10
206F
2070

20
20845

20
2045

2065

20
20

11
2096
2096

19
20

BF

2070

FD
FD
FD
FD
FD

FD

FD

FD

73

75
76

78
79
80
81
82
' 83
84

86
87
88
89
90
91
92
93
94
95
96
97
98

100
101

183

le5
106
187
108
189
110
111

113

115
116
117
118
119

121

123
124
125
126
127
128

130
131
132
133
134
135

139
140
141
142

* READ BLOCK AND CHECK FOR VALIDITY AS AN INDEX BLOCK
READIT JSR READ READ THIS BLOCK
BCS NXTBLK ERROR?
LDY 40
CHKNG1 LDA BUFFER,Y MAKE SURE ITS NOT ALL ZERO
ORA BUFFER+$106,Y
BNE CHKNG2
INY
BNE CHKNGl
BEQ NXTBLK IF SO, SKIP IT
CHKNG2 LDY #0
CHKING LDA BUFFER,Y ALLOW ZERO ENTRIES
BNE COMPR
LDA BUFFER+$100,Y
BEQ BLKOK
COMPR LDX #0 CHECK AGAINST FIRST
JSR CMP DO 16 BIT COMPARE
BCC NXTBLK TOO SMALL FOR BLOCK NUMBER
LDX #2 CHECK AGAINST LAST
JSR CMP
BCS NXTBLK TOO LARGE FOR BLOCK NUMBER
BLKOK INY
BNE CHKING
JSR PBLOCK FOUND ONE, PRINT BLOCK NO.
JMP NXTBLK THEN CONTINUE
* CMP: 16 BIT COMPARE
CcMP LDA BUFFER+$S100,Y CHECK MSB
CMP FIRST+1,X
BCC RTS ITS SMALLER
BNE RTS ITS BIGGER
LDA BUFFER,Y CHECK LSB
CMP FIRST,X
RTS RTS
* READ A BLOCK FROM DISK TO $1008
READ JSR MLI CALL MLI
DFB §80 READ CALL
oW RWBLP
BCS ERROR ERROR?
RTS
* IF ERROR OCCURS, PRINT MESSAGE
ERROR PHA ; SAVE ERROR CODE
LDA #$87 BEEP THE SPEAKER
JSR COUT
LDA #'R PRINT THE "RC="
JSR COUT
LDA $'C
JSR COUT
LDA #'s=
JSR CoUuT
PLA
JSR PRBYTE PRINT THE HEX VALUE
LDA #SAQ PRINT A BLANK
JSR COUT & FALL THRU TO PRINT BLOCK
* PRINT CURRENT BLOCK NUMBER
PBLOCK LDA #'B PRINT "BLK="
JSR COUT
LDA #'L
JSR CouT

A-30 Beneath Apple ProDOS

20C8:A9 CB 143 LDA #'K

20CA:20 ED FD 144 JSR couT

26CD:A9 BD 145 LDA #'=

20CF:20 ED FD 146 JSR court

20D2:AD EA 20 147 LDA BLOCK+1 PRINT BLOCK NUMBER IN HEX
20D5:20 DA FD 148 JSR PRBYTE PRINT MSB

20D8:AD EY 20 149 LDA BLOCK

20DB:2¢ DA FD 159 JSR PRBYTE AND LSB

20DE:A9 8D 151 LDA #58D

20E0@:20 ED FD 152 JSR couT NEW LINE

20E3:38 153 SEC

20E4:60 154 RTS

20ES: 156 * ML1 READ/WRITE BLOCK PARAMETER LIST

20E5:03 158 RWBLP DFB $63 PARM COUNT = 3

20E6:60 159 OUNIT DFB $60 UNIT NUMBER

20E7:00 10 160 BUFF DW BUFFER BUFFER ADDRESS

20E9:00 00 161 BLOCK DW $0000 BLOCK NUMBER

20EB: 00 00 163 FIRST DW $0000 FIRST BLOCK AFTER BIT MAP
20ED:00 00 164 LAST DW Sgeoe LAST BLOCK ON DISK +1

The TYPE program is an example of how to add commands to
the ProDOS BASIC Interpreter. TY PE may be installed as a
command by BRUNning TYPE or using the “—” smart RUN
command. Once installed, the user may enter:

TYPE filename[,Sslot][,Ddrive]

The BI will not recognize “TYPE” as one of its commands and
will pass control to the installed external command handler. The
handler will locate and open the file, read its contents and print
them on the screen or output device. The user may suspend the
listing with any keypress and resume it with any other. A control-
C will abort the listing.

TYPE’s operation begins when it is BRUN. Its first task is to
allocate a page of memory between the BI and its buffers. It will
copy the resident part of its program into this page. TY PE next
stores the address of the newly allocated page in the BI's
EXTERNCMD vector in the BI Global Page. Each time the BI
sees a command it doesn’t recognize, it will call the address in the
EXTERNCMD vector before treating it as an invalid command.
The transient portion of TYPE finishes up by copying and
relocating the fixed addresses in the resident portion up to its new
home in the newly allocated BI buffer. The transient portion then
exits to ProDOS.

A\

n .

mm

im

n

Ty

TR A DM A MDD T T MW

[V f

W W W W W W Wl wads W

T-E - T 1~}

() ST R | - ¥ - |+

Example Programs A-31

When an unknown command line is encountered, control passes
to the resident code at TYPENT. TYPENT compares the
command to the string “TYPE”, and if there is a match, it claims
the command and returns to the BI to allow it to parse the filename
and any other keywords given. If no SYNTAX ERROR occurs,
control returns from the Bl at the label TYPBAK. (If TYPENT
does not recognize the command, it passes control on to the original
contents of EXTERNCMD, in case there are other external
command handlers installed.) When control returns to TYPBAK,
the MLI is called to open the file, using the BI's General Purpose
buffer at HIMEM for an I/O buffer. The file is then read, 256 bytes
at a time using $200 for a data buffer, and its contents are copied to
the COUT sereen output vector. At End of File, TYPENT exits to
the BI through the MLI CLOSE function call.

TYPE may be used as a model for small command handlers. It is
written in such a way that it may coexist with numerous other
external command handlers by preserving the original value it
finds in the EXTERNCMD vector. Suggestions for additional
external commands might include a file COPY command or a file
hex/ASCII DUMP command. Note that if the installed, resident
portion is longer than 256 bytes, the relocation code will have to be
rewritten and will be a bit more complex.

L T R S

————— NEXT OBJECT FILE NAME IS TYPE.S.@

2080 2000 1 ORG $2000

2000: R R T e PP T PR TR T
2000: 4 *

2000: 5 * TYPE: WHEN BRUN, THIS PROGRAM INSTALLS AN EXTERNAL
2000: 6 * PRODOS BASIC INTERPRETER COMMAND BETWEEN THE
2000: 7 * BI AND ITS BUFFERS. THE NEW COMMAND IS

2000: 8 * INVOKED AS FOLLOWS:

2000: 9 *

2000: 10 * TYPE <PATHNAME> [,S#] [,D#)

2000: 11 *

2000 12 * THE TYPE COMMAND COPIES THE CONTENTS OF THE

2000 13 * INDICATED FILE TO THE SCREEN.

2000 14 *

2000 15 * THE RESIDENT PORTION OF THE TYPE COMMAND

2000 16 * REQUIRES ONLY 256 BYTES OF RAM.

2000 17 *

2000 18 * PROGRAMMER: DON D WORTH - 2/21/84

2000 19 *

20060 P R R R L e S S R AR R L]

A-32 Beneath Apple ProDOS

2000:

2000: a648
2000: 09673
2000: 0208
2000: BF@@
2900: Ceoe
2¢00: cale
2000: FDED
20006:

9000:

BE@O: BE@O

BEGO:4C 00 00
BE@3:4C @0 @0
BE0G6:4C 00 @0
BE@9:4C 60 @0
BE@C:4C 00 @0
BEOF:00

BE5@:
BES50:00 00
BE52:00
BE53:00

BESO

BES4:
BES54:
BES54:00 00
BE56:00 00

@001
2004

BE6C:
BE6C:00 @0
BE6E: 00 @0

BE6C

BE7@: BE780

BECB:
BECB:0@3
BECC: 08 g

BECE: @0
BED@:00

BECB

BEDS:
BEDS:
BED5:
BED5:04
BED6:00
BED7:00 00
BED9:00 40
BEDB: 0@ 90

BEDS
BEDS
BEDS

BEDD:
BEDD:
BEDD: @1
BEDE:00

BEDD
BEDD

BEF5:
BEF5:4C 00 @0

BEFS

2000:

2000:
2000:
2000:

20060:29 01
2062:20 F5 BE

2005:90 10 2617

22
24
25
26
27

29
30

58

69
61
62

64

66
67

69
7@
71
73

75
76

78

80
81

83

85
87
89
91

PTR
HIMEM

MLI
KBD
KBDSTB
couT

BIENTRY
DOSCMD
EXTCMD
ERROUT
PRNTERR
ERRCODE

XTADDR
XLEN
XCNUM

FN1
sD

PBITS
FBITS

VPATHL

VPATH2

GOSYS

SOPEN
OSYSBUF
OREFNUM
SREAD
SWRITE
RWRFNUM
RWDATA
RWCOUNT
RWTRANS

SCLOSE
SFLUSH

CFRFNUM

GETBUFR

*

TYPE

FIXED LOCATIONS WE NEED

EQU $48 WORK ZPAGE POINTER

EQU $73 HIMEM (START OF GP BUFFER)
EQU $200 INPUT LINE BUFFER

EQU SBFOG MACHINE LANGUAGE INTERFACE
EQU $Coo@e KEYBOARD LATCH

EQU $cele KEYBOARD CLEAR STROBE

EQU SFDED MONITOR PRINT VECTOR

SELECTED THINGS FROM THE BI GLOBAL PAGE

DSECT

ORG $BEG® START OF BI GLOBAL PAGE
JMP $0@00 WARM ENTRY INTO PRODOS BI
JMP $0000 COMMAND EXECUTER

JMP see0e EXTERNAL COMMAND VECTOR
JMP $0000 EXIT WITH ERROR

JMp sager PRINT ERROR MESSAGE

DFB] ERROR CODE

ORG $BES5@

DW $0000 EXEC ADDR OF EXTERNAL CMD
DFB] LENGTH OF CMD STRING -1
DFB '] BI COMMAND NUMBER

EQU Sol FILE NAME EXPECTED

EQU S04 SLOT/DRIVE PERMITTED

DW] ALLOWED PARAMETERS BITS
DW 9 PARAMETERS FOUND BITS

ORG $BE6C

DwW see0e ADDR OF PATHNAME 1 BUFFER

DW $0000 ADDR OF PATHNAME 2 BUFFER

EQU * MLI CALL HANDLER
ORG §$BECB

DFB $03 OPEN PARAMETER LIST
DW §292¢

DW 2300 BUFFER ADDR

DFB $@6 REF NUM RETURNED
ORG $BEDS

EQU READ/WRITE PARM LIST
EQU *

DFB $04 PARM COUNT = 4

DFB $00 REFNUM

DW 50000 BUFFER ADDR

DW 50000 REQUEST LENGTH

DW $0000 TRUE LENGTH

EQU * CLOSE/FLUSH PARM LIST
EQU *
DFB $o1 PARM COUNT = 1
DFB S0 REFNUM
ORG $BEF5
JMp $geeq ALLOCATE BI BUFFER
DEND
THIS PART OF THE PROGRAM GETS CONTROL WHEN THE

BRUN COMMAND IS ISSUED. IT RELOCATES THE RESIDENT
PART OF THE CODE TO THE TOP OF MEMORY

LDA #1 WE NEED 1 PAGE
JSR GETBUFR BUY MEMORY FOR RESIDENT CODE
BCC GOTBUF GOT IT

b

wm
i

MmO MM MM EM T TN W

m

_nnrrrm

)

la

i w

BRTTRT T

THERTY

|

il iaj

12l

-

(

|

,,
im

o

™

Example Programs A-33

2007:20
2009:B9
200C:20
200F:C8
2010:C9
2012:D0

-2014:4C

- 2017:85

2@19:AE
201C:8D
201F:8E
2022:AE
2025:8E
2028:A0
202A:84
282C:8C

202F:B9
2032:91
2034:8C
2037:48
2038:29
203A:A8
203B:68
203C:4A
2@3D:4A

"203E:AA

203F:BD
2042:88

. 2043:30

2045:4A
2046:4A
2047:D0
2049:29
20@4B:F0
204D:AA
204E:AC
2051:E0
2053:F0
2055:C8
2056:CA
2057:F0
2059:B9
205C:91
205E:C8
205F:DO

2061:

2061:C8
2062:B9
2065:91
2067:C8
2068 :B9
206B:C9
206D:DO
206F:A5
2871:00

2673:
2073:4C
2076:
2076:

2076:CE
208D:87

90
04
F9
03
26
8F

23
oC

D6
00
48

CE

00

CF
8D

20
FD

2069

BE

BE

BE

BE

21

BE

21

20

20

2649

2042
2073
20

2061

202F
21

202F

21

21
2¢5C

265C

BE

A@ D2

93
94
95
96

98
99

101
162
163
104
195
106
107
108
199

111
112
113
114
115
116
117
118
119
128
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

141

143
144
145
146
147
148
149
150
151

153
155
157
159

1680
161

LDY ¥0
ERLP LDA MSG,Y NO. BUFFER, PRINT MESSAGE
JSR coutr
INY
CcMP #S8D
BNE ERLP
EXIT JMP BIENTRY AND LEAVE
GOTBUF STA PTR+1 PTR --> BUFFER
LDX EXTCMD+2
STA EXTCMD+2 EXTCMD --> BUFFER
STX - NXTCOM+2
LDX EXTCMD+1 BUT SAVE OLD EXTRNCMD VECTOR
STX NXTCOM+1
LDY #0
STY PTR
STY EXTCMD+1
COPY LDA TYPENT,Y COPY RESIDENT CODE TO BUFFER
STA (PTR) ,Y
STY SAVE SAVE YREG
PHA
AND #503 ISOLATE BIT OFFSET OF OPCODE
TAY
PLA
LSR A
LSR A DIVIDE BY 4 (BYTE OFFSET)
TAX
LDA OPTAB,X _.GET 4 OPCODES' LENGTHS
OPLOOP DEY
BMI OPDONE SHIFT OUT THE 2 BIT LEN
LSR A
LSR A
BNE OPLOOP
OPDONE AND #5063 ISOLATE LENGTH
BEQ COPIED @ LENGTH OP ($FF) SIGNALS END
TAX
LDY SAVE RESTORE YREG
[03:9 4 #3
BEQ RELOC RELOCATE ALL 3 ‘BYTE OPS
INY
DEX
BEQ copry 1 BYTE OP?
LDA TYPENT,Y NO, THAT LEAVES 2 BYTE OPS
STMSB STA (PTR) ,Y
INY
BNE copryY CONTINUE COPYING
* RELOCATE® ABSOLUTE ADDRESSES IN INSTRUCTIONS
RELOC INY
LDA TYPENT,Y COPY LSB OF ADDR
STA (PTR) ,Y
INY
LDA TYPENT,Y
CMP #<TYPENT THIS ADDR WITHIN TYPENT?
BNE STMSB NO
LDA PTR+1 YES, USE MSB OF NEW HOME
BNE STMSB ALWAYS TAKEN
* RESIDENT CODE HAS BEEN INSTALLED, WE CAN EXIT
COPIED. JMP BIENTRY DONE, EXIT
* . INSTALLATION DATA
MSB ON
MSG ASC 'NO ROOM FOR NEW COMMAND'
DFB $87,9$8D

A-34

Beneath Apple ProDOS

208F: 00

2090:
2090:
2090:
2090:
2090:
2090:

2090:59
2094:5a
2098:5B
209C:5A
20A@:59
20A4:5A
20A8:59
20AC:5a
20B@:59
20B4:5A
20BB:6A
20BC:5A
2@C@:5A
28C4:5A
2¢C8:5A
20CC:5A

2¢D0:
2000:

210@:

2100:D8
2101:AD
2104:85
2106:AD
2109:85
210B:AQ
216D:Bl
210F:D9
2112:D9
2114:C8
2115:Co
2117:99

2119:
2119:

2119:88
211A:8C
211D:A9
211F:8D
2122:A9
2124:8D
2127:A9
2129:8D
212C:AD
212F:AD
2132:8D
2135:AD
2138:8D
213B:18
213C:60

213D:
213D:

213D:38
213E:4C

6C
48
6D
49
g1
48
AC
29

g4
F4

52
11’)
53
64
55
g1
54
44
2D
50
2E
51

59
5D
59

59
5D
59

55
5D
59
5D
59
5D
59
SD

2100

BE

BE

21

213D

216D

BE
BE
BE
BE
21
BE

21
BE

"l’]

7D
7D
7F
7D
7F
7D

7D
3
5D
7F
7F
F
7D
7F
3D

163

165
166
167
168
169
17¢

172
173
174
175
176
177
178
179
1860
181
182
183
184
185
186
187

213
214
215
216
217
218
219
224
221
222
223
224
225
226
227

229
230

232
233

SAVE DFB

EIE I B O

[*] SAVE AREA FOR YREG

EACH BYTE CONTAINS THE LENGTHS OF 4 6502 OPCODES
FOR EXAMPLE, AT +0 IS A $59.
IN BINARY $59 = $1611061 OR

61 61 1@ 01 (1,1,2,1)

THESE ARE THE LENGTHS (IN REVERSED ORDER) FOR BRK,
ORA (N,X), AND TWO UNDEFINED OPCODES.

OPTAB DFB $59,$69,$59,37D OPCODE LENGTH TABLE

DFB §$5A,$69,$5D,$7D

DFB $5B,$6A,$59,$7F

DFB $5A,$69,$5D,$7D

DFB $59,569,$59,$7F

DFB $5A,$69,$5D,S7D

DFB $59,569,859,87F

DFB $5A,$69,$5D,S7D

DFB $59,$6A,S55,$7F

DFB $5A,$6A,$5D,$5D

DFB $6A,$6A,8$59,87F

DFB $5A,$6A,$5D,S7F

DFB $5A,$6A,$59,S7F

DFB $5A,$69,$5D,S7D

DFB $5A,$6A,$59,87F

DFB $5A,$69,55D,$3D ONLY $FF GIVES @ LEN
* NOW STARTS THE RESIDENT CODE WHICH IS MOVED TO HIGH
* MEMORY,
* TYPENT IS CALLED BY THE BI WHENEVER IT DOESN'T
* RECOGNIZE A COMMAND. WE TAKE A LOOK AT IT SO SEE IF
* IT MIGHT BE THE "TYPE" COMMAND.

ORG TYPE+256 MUST BE PAGE ALIGNED
TYPENT CLD ; IDENTIFY TO BI

LDA VPATHL COPY COMMAND LINE PTR

STA PTR

LDA VPATH1+1

STA PTR+1

LDY #1
COMPR LDA (PTR) ,Y COMPARE COMMAND STRING

CMP NAME-1,Y TO "TYPE"

BNE NOTIT NOT IT, VECTOR ON

INY

CPY #4

BCC COMPR CHECK ALL 4 CHARS
* IT HAS BEEN. DETERMINED THAT THIS COMMAND IS MINE.
* RETURN TO THE BI TO PARSE THE PATHNAME OPERAND

DEY

STY XLEN STORE COMMAND LINE INDEX

LDA #0

STA XCNUM COMMAND NUMBER @ (EXTERN)

LDA #SD SLOT/DRIVE PERMITTED

STA PBITS+l

LDA #FN1 WE NEED PATHNAMEL

STA PBITS
WHERE LDA TYPBAK <USED TO FIND TYPBAK>

LDA WHERE+1 TELL BI WHERE TO RETURN

STA XTADDR

LDA WHERE+2

STA XTADDR+1

CLC ; INDICATE COMMAND WAS FOUND

RTS ; BACK TO BI FOR MORE PARSING
* IF WE DON'T CLAIM A COMMAND, PASS IT THROUGH TO ANY

* OTHER

NOTIT SEC
NXTCOM JMP

EXTERNAL COMMAND HANDLERS

; INDICATE COMMAND NOT FOUND

$0000 <OLD EXTCMD VECTOR>

L)

MMM m

m

UL L L L UL L

m

LB R

|

4

w e W i e @ e a ta

14

T

e

e IE

e

[}

(m

Example Programs A-38

2141:4C

2144:
2144:

2144:A4
2146:8C
2149:29
214B:8D
214E:A9
2150:20
2153:B6@
2155:AD
2158:8D
215B:8D

215E:

215E:AQ
2160:8C
2163:8C
2166:C8
2167:8C
216A:C8
216B:8C
216E:A9
2170:28
2173:99
2175:C9
2177:00
2179:A9
217B:20
217E:A9
2180:4C

2183:

2183:A0
2185:B9
2188:09
218A:20
218D:AD
219@:10
2192:8D
2195:C9
2197:F0
2199:AD
219C:10
219E:8D
21A1:C9
21A3:F0
21A5:C8
21A6:CC
21A9:D0
21AB:F@

21AD:
21AD:54
21B1:FF

74
CF
%)
CE
c8
70
EC
D@
D6
DE

")
D7
D9

DA

D8
Cca
76
0E
a5
cs
8D
ED
ccC
70

a0
L]

ED
09

10
83
E®
00
FB
10

D4
DB

DA
Bl

59
FF

BE

BE
BE

BE
2141

BE
BE

BE
BE

BE
BE

BE
2183

2141
FD

BE

@2

FD

ce
21A5

ce

2179

2199
co

2179
BE

2185
215E

5@ 45
FF

235 TYPERR JMP ERROUT

VECTOR TO BI ERROR EXIT

237 * ONCE THE COMMAND HAS BEEN PARSED, THE BI CALLS THE
238 * FOLLOWING CODE TO FINISH HANDLING THE COMMAND
24@¢ TYPBAK LDY HIMEM+1 MSB OF BUFFER AREA
241. STY OSYSBUF+1 COPY TO OPEN LIST

242 LDA *0

243 STA OSYSBUF

244 LDA #s5C8 MLI: OPEN

245 JSR GOsYS OPEN THE FILE

246 BCS TYPERR ERROR?

247 LDA OREFNUM COPY REF NUM

248 STA RWRFNUM TO READ LIST

249 STA CFREFNUM AND CLOSE LIST

251 * FILE IS OPEN, READ 256 BYTES AT A TIME

253 TYPLP LDY #0

254 STY RWDATA

255 STY RWCOUNT

256 INY

257 STY RWCOUNT+1 256 BYTES AT A TIME
258 INY

259 STY RWDATA+1 TO $200

260 LDA #SCa MLI: READ

261 JSR GOSYs READ 256 BYTES TO $20@
262 BCC TYPPRT ALL WENT WELL

263 cMP #5 EOF ERROR?

264 BNE TYPERR NO, REAL ERROR

265 TYQUIT LDA #S8D

266 JSR cour PRINT A FINAL NEWLINE
267 LDA #$CC MLI: CLOSE

268 JMP GOSYS EXIT THROUGH CLOSE

276 * COPY READ BUFFER TO SCREEN

272 TYPPRT LDY 40

273 TYPPLP LDA $200,Y COPY BYTE BY BYTE

274 ORA #580 MSB ON FOR COUT

275 JSR couT TO OUTPUT VECTOR

276 LDA KBD CHECK FOR INTERVENTION
277 BPL TYPON NOTHING, CONTINUE

278 STA KBDSTB CLEAR STROBE

279 CMP #5583 CONTROL-C?

289 BEQ TYQUIT YES, EXIT NOW

281 TYPWT LDA KBD WAIT FOR A SECOND KEYPRESS
282 BPL TYPWT

283 STA KBDSTB CLEAR STROBE

284 CcMP #9583 CONTROL=-C?

285 BEQ TYQUIT YES, ABORT

286 TYPON INY ; ELSE, CONTINUE TYPING
287 CPY RWTRANS UNTIL BUFFER EMPTY
288 BNE TYPPLP

289 BEQ TYPLP THEN GO READ ANOTHER
291 MSB OFF

292 NAME ASC 'TYPE' COMMAND NAME
293 DFB $FF,$FF,$FF END OF PROGRAM FLAGS

A-36 Beneath Apple ProDOS

DUMBTERM—DUMB TERMINAL PROGRAM

DUMBTERM is an example of how to program }lnder PrpDOS
using interrupts. DUMBTERM acts as a simple, hne—gt-a-t}me
terminal emulation program which interfaces to a California
Computer Systems CCS 7710 serial card. The same program can
be written for an Apple Super Serial card (but interrupts are not
as reliable for that card). The main portign of the prqgram.merely
loops, checking the keyboard and the serial card for incoming
data. If a keypress is found, it is sent out over the serial line. If

~incoming serial data is found, it is displayed on the screen.

The meat of the program lies within the commun.lcgt.lor'ls
subroutines in the last half of the listing. COMINT 1q1t1gtllzes the
CCS card for interrupts after-passing the address of its interrupt
handler (COMIRQ) to ProDOS via the ALLOC_INTERRUPT _
MLI call. Each time an interrupt occurs, the COMIRQ handler is
called by ProDOS and it examines the CCS status register to
determine whether the interrupt was raised by the CCS carjd. I.f
not, COMIRQ returns to ProDOS with the carry flag'set to indicate
that it is not claiming the interrupt. This gives ot_her interrupt
handlers a chance to service the interrupt. If thg 1nte.r'rupt was
generated by the CCS card and incoming d?,ta is available, a
character is read and stored in a 256-byte circular buffer and

exits to ProDOS. .
C(:')I‘l\lg lgl?ffer is called circular because a pair of index pm_ntqrs are
used (start of data, end of data) to mark the actual data within the
buffer and these pointers may wrap at the end of the bu'ffer.' back to
its beginning. Thus, conceptually the buffer has no.begmmng.or
end. This means that the main program may be doing something
else but the interrupt routine can buffer up to 256 characters ‘
coming in from the serial port before it will lose data. If the main
part of the program was ever vigilant and constantly checked for

incoming serial data, there would be no need for an interrupt exit.

However, each time the COUT screen output subroutine is called,
there is a potential that control will not return before the next
character is available. This is because the Apple scrolls the screenf
by moving every line up a byte at a time, one by one. T}}e proce;% 8
serolling a 40-column screen lasts over one §haracter time a?; 1 X
baud (120 characters per second) on the serial por_t. Thus, w1thou_
an interrupt exit, a character would be lost each time the screen 1s

scrolled up one line.

|

w W

o oo oMM MAEOMNMNMNMN RN

i W W [jL‘ ljl

T T U T T |

im

f

!

|

1

I3

Example Programs A-37

Ideally this should be all there is to it. On an AppleII Plus,
DUMBTERM works well under most circumstances and with
most 80-column cards. Unfortunately this is not the case on an
Apple Ile. Due to an error in programming the Apple Ile ROM,
the entire process of scrolling the 40-column sereen in PR#0 mode
is disabled from interrupts! Thus the interrupt exit is useless in
this mode. For 80-column scrolls, the ROM also disables interrupts
while scrolling the bank switched text page, and the interrupt exit
is again useless (at 1200 baud anyway). The only mode where the
exit is reliable is the 40-column mode with PR#3 (control-Q). There
are ways of avoiding these problems for 1200 baud. One is to
change the window size (so that the monitor has less data to scroll).
This is done by storing a new bottom line value at $23. In PR#0 40-
column mode, this value should be $15. In 80-column mode, it must
be $0E. Another solution would be to reproduce the scrolling code
from the monitor into your own program and “sniff” for interrupts
(i.e. enable for interrupts and disable again) more frequently than
Apple does. It is also worth noting that some 80-column cards, such
as the ALS Smarterm, “scroll” by moving a hardware “top of
screen” pointer. No CPU time is required to scroll this way and
terminal programs are much easier to write.

DUMBTERM is also an example of a simple Interpreter or
System Program. It sets up the stack register and ProDOS version
fields in the System Global Page upon entry, and it exits upon
sensing a control-C keypress using the MLI QUIT ecall.

NEXT OBJECT FILE
2000

NAME IS DUMBTERM,S.Q
ORG $2000

ait**w*x******ty**tﬁ******t*x*tt***xttar*a**nxgktttttﬁna*t*

*

* DUMBTERM: THIS PROGRAM ACTS AS A DUMB TERMINAL

* THROUGH A CCS 771@ SERIAL CARD USING

THE PRODOS INTERRUPT HANDLER FOR INPUT
INTERRUPTS. THIS PROGRAM FOLLOWS THE RULES
FOR A PRODOS INTERPRETER.

*
*

*
2000: 11 * ASSUMPTIONS: CCS771@ CARD IN SLOT 1

*
*
*
*
*
*
*
*
1 STOP, NO PARITY *
*
*
*
*
*
*
*

N
=
=
S}
-
[N}
*

8 DATA BITS,
2000: 13 * BAUD RATE SET BY DIP SWITCHES ON CARD
2000: 14 *
2000: 15 * ENTRY POINT: $2060
2000: 16 *
2000: 17 * PROGRAMMER: DON D WORTH 3/8,/84
2000: 18 *
2“0@: 19 *k*******t****t*ﬁ*t*****ik***ki****t*t**ik***i**ti*k*'ki*i

A-38 Beneath Apple ProDOS

in

V8

2000:

20080:A2 FF
2002:9A

20063:29 00
20065:8D FC
2008:8D FD
20@B:206 62
206E:20 S8
2011:A9 02
2613:2C 98
2016:F@ 03
2018:20 49¢

201B:

201B:AD F4
201E:F@ 06A
2020:A9 87
2022:2@ ED

@a87
26eD
agan

0oAe

8083C
@e3D
9@3E
@@3F

BFOO
BF98
BFFC
BFFD
cooee
cglio
FDED
FD@C
FCS8
FB39

BF
BF

FC

BF

201B

C3

201B

20

202A

FD

BELL
CR

RET

SPA

1RM

E

[oK:

AlL
AlH
A2L
A2H

MLI

MACHID
IBAKVER

IVERS
KBD

KBDRES

CcouT
RDKEY
HOME
TEXT

*

DTERM

EGIN

* % R R % O % % % o HLD ¥ * k¥ *

*

LOOP

EQU
EQU
EQU

Qv

EQU

ZPAGE

EQU
EQU
EQU
EQU

OTHER

EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU *

EQU
EQU

START

LDX
TXS
LDA
STA
STA
JSR
JSR
LDA
BIT
BEQ
JSR

NOTE:

EQU

OCCURS,

LDA
STA

LDA
BEQ
LDA
JSR

$87
$@o
$8D

SAG

DEFINITIONS

$3C
$3D
$3E
$3F

ADDRESSES

$SBFO@
$BF98
$BFFC
$SBFFD
$Coeg
$Cole
SFDED
$FDEC
$FC58
SFB39

#$FF
#0

IBAKVER
IVERS
COMINT

HOME
#9062

MACHID
BEGIN
$C300

*

-- SPECIAL NOTE ---

#$S0E
$23

MAIN TERMINAL LOCP

ERRORS
NOERRS
#BELL

couT

BELL CHARACTER
RETURN

PRINTABLE RETURN
BLANK

MONITOR POINTER

MONITOR POINTER

PRODOS ENTRY POINT

PRODOS MACHINE ID

MLI VERSION WANTED

MY VERSION

KEYBOARD STROBE

KEYBOARD RESET

MONITOR OUTPUT SUBROUTINE
MONITOR INPUT SUBROUTINE
MONITOR HOME

SET TEXT MODE

OF DUMB TERMINAL EMULATOR

SET UP STACK POINTER *

VERSION @ FOR EVERYBODY

INITIALIZE SERIAL PORT
CLEAR SCREEN

8¢ COLUMN CARD PRESENT?
NO
INITIALIZE 80 CQLUMN CARD

NO NEED TO SET BIT MAP HERE SINCE NOT DOING
DYNAMIC MEMORY ALLOCATION.
THE POWERUP BYTE SO THAT RESET FORCES REBOOT.

IF AN APPLE] [E IS USED, THERE MAY BE DATA
ERRORS AT 1200 BAUD WHEN SCROLLING. IF THIS
INSERT THESE INSTRUCTIONS AT THIS POINT:

SET WINDOW 14 LINES HIGH

(LDA #$15 IF YOU HAVE NO 80 COL CARD IN YOUR 1[E.}

HAVE ANY ERRORS OCCURED?
NO
YES, BEEP AT HIM

mmonmeww
T TRY §

i

m m
(V T ¥

mmmmm

m

AND WE WILL LEAVE

13

M

L

Example Programs A-39

2025:A9 @0
2427:8D F4
202A:AD 00
2862D:10¢ BF
282F:29 7F
2031:CY9 @3
2033:F@ 1D
2035:AD 00
2038:8D 10
263B: 2@ CC

203E:2¢ Bl
2041:F9 D8
2043:20 BA
2046:09 804
2048:C9 8A
204A:F@ CF
204C:208 ED
204F:4C 1B

2052:

2052:20 D9
2055:20 00

2659:5B 20

205B:04
205C: 00

205D:00 00

205F:00

2060:00 00

2862:
2062:
2062:
2062:
2062:

2062:

2062:
2062:

2062:

2062:A9 00
2064:8D F5
2067:8D F6
206A:20 00

206D: 40

206E:F0 20
2870:A9 23
2072:8D 9E
2075:A9 15
2077:8D 9E
207A:AE 9F
207D:09 8¢
207F:8D 9E

2082:60

2083:

2083:AD 9E
2086:30 92

2¢88:38
2089:60
208A:48

208B:29 70
208D:F0 @3
208F:EE F4

2092:68

201B
FD
20

20
BF

CO9E
CO9E
Ce9F

20
20
BF

Cco

co
co

co
208A

2092
20

85 LDA 4@ AND CLEAR ERROR COUNTER
86 STA ERRORS
87 NOERRS LDA KBD FIRST TEST KEYBOARD
88 BPL NOKEY NOTHING YET?
89 AND #ST7F
99 CMP 43 CONTROL-C?
91 BEQ EXIT
92 LDA KBD RELOAD CHARACTER
93 STA KBDRES CLEAR KEYBOARD
94 JSR COMOUT SEND THE CHARACTER OUT
96 NOKEY JSR COMTIN TEST FOR AVAILABLE INPUT
97 BEQ LOOP NONE, CHECK KEYBOARD AGAIN
98 JSR COMINP GET NEXT INPUT CHARACTER
99 ORA #580 MSB ON FOR OUTPUT
100 CMP #58A LINE FEED?
101 BEQ LOOP YES, SKIP IT
192 JSR couT ELSE, PRINT IT
103 JMP LOOP AND CONTINUE LOOP
165 * IF CONTROL-C IS TYPED, EXIT
167 EXIT JSR COMCLS CLOSE DOWN COMM LINE
108 JSR MLI MLI: QUIT CALL
199 DFB $65
110 DW QPARMS
111 QPARMS DFB 4 QUIT PARMLIST
112 DFB @
113 bW [
114 DFB ¢
115 DW o
117 tt*ti***ﬁ**k****t"ﬁit*i*****titti**t**********ﬁ****
118 * *
119 * CCS 7710 COMMUNICATIONS SUBROUTINES *
120 * *
121 iﬁ**tt***ﬁ**kﬁﬁ*ﬁ*t*t****ﬁ*ﬁii****ﬂ*****i*****ﬁ**k*
123 cccoM EQU SC@9E CCS COMMAND REG
124 CCSTS EQU $CO9E CCS STATUS REG
125 CCDTA EQU $CO9F CCS DATA REG
127 * COMINT: INITIALIZE THE COMM LINE
129 COMINT LDA 40
130 STA CIRCS START CIRCULAR BUFFER PTRS
131 STA CIRCE
132 JSR MLI ALLOCATE INTERRUPT EXIT
133 DFB $40
134 DW APARMS
135 LDA #$23 RESET ACIA
136 STA CCCOM
137 LDA §$15 8 BITS/1 STOP/NO PAR/NO INTS
138 STA CCcoM
139 LDX CCDTA THROW AWAY ANY GARBAGE
140 ORA #5890 ENABLE INTERRUPTS
141 STA CCCOM
142 RTS
144 * COMIRQ: INTERRUPT EXIT
146 COMIRQ LDA CCSTS CHECK STATUS
147 BMI COMME INTERRUPT WAS FOR ME?
148 SEC ; INDICATE NOT MY INTERRUPT
149 RTS
150 COMME PHA
151 AND #3870 ANY ERRORS OCCURED?
152 BEQ COMNE NO
153 INC ERRORS YES, BUMP ERROR COUNT
154 COMNE PLA

A-40 Beneath Apple ProDOS

2093:
2095:
2097:
209A:
209D:
20A0:
:8E
20A4:
20A7:
20A9:
20AC:
20AF:
20B0:

20A1

20B1:
20B1:

20B1:
20B2:
20BS:
20B8:
20B9:

20BA:

20BA:
20BD:
20BF:
20C0o:
20C3:
20C6:
20C7:
20CA:
20CB:

29CC:

20@CC:
20CD:
20D0:
20D2:
20D4:
20D5:
20D8:

20D9:

20D9:
2¢DB:
20DE:
20DF:
20El:
20E4:
20E7:
20E8:
20EA:
20EC:
20QEF:

20F0Q:

20F0:
20F1:
20F2:

20F4:
20F5:
20F6:
208F7:

29
Fe
AD
AE
9D
E8

EC
Do
EE
CE

60

78
AE
EC
58
60

29
Fo
78
AE
BD
E8
8E

60

48
AD

FO
68
8D
60

A9
8D
58
A9
8D
20
41
Fo
A9
8D
60

292
83
00

"1’}
00

a1
18
9F
Fé6
F7
Fé6
FS
06
F4
Fé

F5
Fé

Bl

F5

F7

F5

9E
F9

9F

23
9E

oL
Fo
¢
208

Fo

20

ce
20
20

20
20

20
20

20
20

20

20
20

20

co

co

ce

20
BF

20

2QAF

20AF

20BA

20CD

0100

155
156
157
158
159
160
161
162
163
164
165
166
167

169
17¢

172
173
174
175
176

178

180
181
182
183
184
185
186
187
188

192
193
194
195
196
197
198

200

202
203
204
205
206
207
208
209
210
211
212

214

216
217
218

220
221
222
223

CLAIM

*
*

COMTIN

*

COMINP

*

COMOUT
COMOL

COMOIT

*

COMCLS

*

APARMS

ERRORS
CIRCS
CIRCE
CIRC

AND
BEQ
LDA
LDX
STA
INX
STX
CPX
BNE
INC
DEC
cLc
RTS

COMTIN:

SEI
LDX
cpx
CLI
RTS

COMINP:

JSR
BEQ
SEI
LDX
LDA
INX
STX
cLI
RTS

COMOUT:

PHA
LDA
AND
BEQ
PLA
STA
RTS

COMCLS:

LDA
STA
CLI
LDA
STA
JSR
DFB
DW

LDA
STA
RTS

DATA

DFB
DFB
DW

DFB
DFB
DFB
DS

#s01
CLAIM
cCcpTA
CIRCE
CIRC,X

CIRCE
CIRCS
CLAIM
ERRORS
CIRCE

CHECK FOR INCOMING DATA
NONE, IGNORE OTHER INTERUPTS
GET INCOMING BYTE

STORE IT AT END OF BUFFER

UPDATE END POINT

WRAPPED BACK TO START?
NO, DID NOT OVERRUN
OVERRUN ERROR, BUMP COUNT
BACK UP END POINT

; CLAIM THE INTERRUPT

TEST FOR AVAILABLE INPUT
IF NEQ, DATA IS AVAILABLE

CIRCS
CIRCE

WAIT FOR NEXT

COMTIN
COMINP

CIRCS
CIRC,X

CIRCS

OUTPUT A BYTE

CCSTS
#502
coMmoL

CCDTA

; DISABLE FROM INTERRUPTS
CHECK CIRCULAR BUFFER

SEE IF ITS EMPTY

; REENABLE

INPUT, RETURN IN AREG

TEST STATUS

NOTHING YET?

; DISABLE TO MESS WITH CIRC
GET INPUT CHARACTER

BUMP START POINTER FORWARD
; REENABLE FOR INTERRUPTS

FROM AREG

CHECK STATUS
ISOLATE TX BUFFER BIT
NOT READY YET

SEND BYTE

CLOSE COMM PORT

#523
CCCOM

#1
APARMS
MLI
$41
APARMS
#2
APARMS

[e NN

OMIRQ

Ve ee

STOP INTERRUPTS/DTR OFF
; JUST FOR SAFETY SAKE
CHANGE PARMLIST

DEALLOC_INTERRUPT

LEAVE THINGS AS 1 FOUND THEM

ALLOC_INTERRUPT PARMS

ERROR STATISTICS
START OF DATA IN CIRC
END OF DATA IN CIRC
CIRCULAR INPUT BUFFER

" |

W W w W w w w uw

m r '

m o r

4

m

LN LG U O U O

T SR U T U T PR V- VR P U VR T

im K

(R}

APPENDIX B

DISKETTE PROTECTION SCHEMES

Protected software, that software which is modified in some
way to prevent it from being copied or duplicated, has existed
since very early in the history of the Apple II. This was even true
of tape based software before disk drives were widely used. It is
not known who protected the first piece of Apple software, but it
has become a widespread practice. So has the practice of copying
or breaking protected software. It should be pointed out that the
following discussion will not take sides in the sometimes
controversial subject of software protection.. Rather, it will
provide an informative look at the methods used to protect
software and how those methods have been circumvented. This
seems appropriate since almost all protection schemes now
involve a modified or customized disk operating system.

At this time, ProDOS is still relatively new and it is unclear if it
will influence the current practice of protecting software. In thata
ProDOS disk is identical to earlier operating systems (DOS 3.3) at
a byte level, it is certainly possible and probable that protection
will exist. However, since ProDOS can and will support other
storage devices (i.e. hard disks ete.), and with the current trend in
sharing data between different applications, additional challenges
exist for software developers. It is possible that the percentage of
protected software may decrease somewhat with the introduction.
of ProDOS. The following discussion will deal with software
protection in general on the Apple II family of computers.

B-2 Beneath Apple ProDOS

A BRIEF HISTORY OF APPLE SOFTWARE PROTECTION

The first protected software was tape based and appeared in the
latter part of 1978, and protected disks followed shortly thereafter.
Early protection schemes often were quite effective as there was
relatively little technical information available. Almost any
modification that rendered the normal means of copying useless
was sufficient in most cases—most schemes did in fact consist of
relatively minor changes to the normal format of data. Individuals
were able to discover and disable these protection methods on a
program by program basis, with little or no thought given to some
automated means of reproducing protected software.

It was not until perhaps a year later, in late 1979, that a
significant event occurred in disk protection. An extremely
popular product was introduced that employed a considerably
improved protection method. This marked the beginning of an
escalating battle between those protecting software and those
trying to copy it. The protection methods used became more and
more complex and involved, increasing time and expense for
developers to create. The copiers also were increasing their efforts.
Programs appeared that were designed to copy particular
software products—a major development in that it defeated a
great number of different schemes with a single basic technique.
These programs are referred to as nibble copiers and were
introduced in early 1981.

Throughout this process, it is clear that both sides made use of
the work of their counterparts. Protection schemes started to
reflect a working knowledge of breaking techniques, and were
often designed to circumvent a particular method or copier. The
people breaking protection methods were also studying the various
methods employed to stop them and producing increasingly
effective tools. This produced a kind of ebb and flow seen in many
competitive areas where each side gains a temporary advantage
only to see it lost. Nibble copiers have had numerous revisions to
cope with advancements in protection methods.

Another significant milestone was the introduction of a
hardware card that could copy software from the Apple’s
memory, thus bypassing most existing protection methods. While
it is hard to single out advancements in protection methods, the
mere presence of the numerous copy programs, hardware devices,
bulletin boards, classes, and magazines aimed at defeating
protection methods indicates the constant advancement of
protection. Also, the fact that software developers continue to

P oMM oMM oMM oo W A A

momm

o

A

r

J

w W WL WwWwWwww uw g

LN Y BT TRY WY U T Y

{n

Diskette Protection Schemes B-3

protect software in the face of escalating costs indicates protection
is still cost effective.

The cycle will no doubt continue. As new sophisticated schemes
are developed, they will be broken by equally sophisticated
schemes.

PROTECTION METHODS

It seems reasonable at this time to say that it is impossible to
protect a program on disk in such a way that it can’t be broken.
This is, in large part, due to the nature of the Apple computer and
its disk drive. It is an extremely well documented machine, with
numerous publications available on both hardware and software
functions. It is indeed difficult to hide anything (necessary in
protecting software) from anyone who is willing to invest sufficient
time to find it.

Most disk protection methods fall into two different types of
schemes. The first involves format alterations, altering some
portion of the disk from its normal format (Chapter 3 and
APPENDIX C provide descriptions of the normal format). The
second involves creating an identifiable mark or signature that
can be used to verify the disk.

o) =t
;';”1'7’""\\\\\

s

COPY PROVTECTION:
THE STRANGEST GAME OF ALL

—

B-4 Beneath Apple ProDOS

FORMAT ALTERATION

A great number of ways exist to alter the format of normal data.
They range from a single byte changed to an entirely different
format. A special case is changing the location of data, and not
necessarily the structure of the data itself. An early example of
this was moving the directory information from its normal location
to a different track altogether. Later, tracks themselves were
moved when “half” tracks became popular (but data must be a full
track apart from other data, a restriction imposed by hardware).
Some disks now even use quarter tracks. Although these methods
were effective for a while, most nibble copiers are equipped to -
handle them. .

A more elaborate technique used is known as spiral tracks.
Data is staggered on alternating half tracks producing, as its name
indicates, a spiral of sorts. Each half track contains approximately
one third of a track of data. The actual amount will vary in
different protection schemes. Note that no data is within one full
track from any other data. If the relationship of the different
segments is critical, this method of protection can be quite difficult
to deal with. Several copy programs are capable of handling this,
but may require parameters and additional time to reproduce a
disk protected in this manner.

As with location changes, format changes range from simple to
complex. Almost all early changes were merely minor
modifications to existing operating systems. The most.common
change was a change to the code that would read and write the
Address Field. This was reasonable because the Address Field is
never rewritten, and the only special code required was the code to
read the modified Address Field.

The Address Field normally starts with the bytes $D5/$AA/$96.
If any of these bytes were changed, a standard operating system
would not be able to locate that particular Address Field, causing
an error. After the Address Field comes the address information
itself (volume, track, sector, and checksum). Some common
techniques include changing the order of this information,
doubling the sector numbers, or altering the checksum with some
constant. Any of the above would cause an error on a standard
operating system. The Address Field ends with two closing by!;es
($DE/$AA), which can be changed or switched also. Similar kinds
of changes can be made to the Data Field. These techniques

worked well until automated programs appeared.

mmmmmmm@‘@‘mmmmmmmm

m

L

T

Im'

g

m

{im'

nn

i, W W W W uw W W W

e il

| ST U T T VAV SV i

la'

i

U

K

Diskette Protection Schemes B-5

The first automated programs were good but generally made the
assumption that the data portions had been modified and that the
various gaps between the data portions were normal. This
prompted modification of the gaps and eventually a radically
different format in an attempt to circumvent the copy programs.
These formats generally involved either different numbers of
otherwise normal sectors on a track, or special sectors with
Address and Data Fields combined. As with other advancements,
this worked well for a time, but current nibble copiers make as few
assumptions about the data format as possible and can generally
deal with such techniques.

SIGNATURE

The earliest example of a signature was probably an unused
track (track 3 was commonly “un”used). The software verifies the
signature by trying to read a sector on the unused track. If an error
occurred, the signature was verified. As simple as this seems now,
it was reasonably effective. While this is a fairly obvious example
of a signature, later methods were much more difficult to detect.
In fact, most signatures have been uncovered by finding and
examining the code that verified it. Once a method was known, an
algorithm could be developed to deal with it.

There are three common signatures used currently in protecting
disks. The first to appear involves counting the number of bytes on
a given track. This is commonly known as nibble counting. The
reasoning was that no two drives spin at precisely the same speed,
and therefore would not reproduce a track precisely. While this is
in fact true, a number of programs now provide the means to
reproduce this type of signature.

Next to arrive was a method that was dependent on the
positional relationship between different portions of the disk. This
is commonly known as synchronized tracks. It generally involves
reading a specific sector, then moving the disk arm to another
track (often with nonstandard timing), and finding a particular
sector first. The angle between the two sectors is arbitrary, but
will always provide just enough time to move the arm and allow for
any settling time needed. This relationship between tracks would
not normally be maintained when copying the disk, and the
signature would thus be removed. This also is provided for in many
current copy programs, sometimes requiring parameters for a
particular disk. '

B-6 Beneath Apple ProDOS

The final method involves writing extra zero bits at given
locations on a disk. These can be thought of as special sync bytes.
When the disk is read, these extra bits are normally discarded.
Figure B.1 shows two different bit patterns that produce the same
data when read. A special routine looks for the extra bits and thus
verifies the signature. There exist some variations to this method
which have proved quite difficult for “nibble” copy programs to
handle. Parameters were generally required, but recent
advancements in nibble copiers appear to be able to locate and
reproduce these extra bits.

We have dealt primarily with disk protection schemes and
nibble copiers, but several other methods of protection exist. These
are protection methods which do not allow a program to be taken
out of memory and patched to disable the protection scheme. It is
worth mentioning that copies produced by a nibble copier are
themselves protected, but software broken in some other way may
be copied by normal means.

11111111 ——FF 1111111100——FF

Figure B4 Comparison of a Normal FF Byte and a Special Sync
Byte

MEMORY PROTECTION

It has long been realized that software is vulnerable as it is being
loaded into memory, and when it resides entirely in memory. This
has prompted a number of techniques, the earliest of which
involved reset protection. When the Reset key was pressed (on
early Apples), the software could be interrupted and was then
resident in memory. Several memory locations were altered
during a reset, and many programs were dependent on the values
contained in those locations. The later Apple computers provide
some measure of protection in that they make it much harder to
interrupt software programs. The hardware boards designed to
copy software from memory have made memory protection very
difficult. The boards generate a Non-Maskable Interrupt and pass
control to on-board software. It is not possible to prevent this
interrupt from software. About the only defense is simply to never
have the entire program in memory at one time. This is often
inconvenient but may be the only effective defense.

_J‘

m MW\
L,

T T T S e S e e e e e —_ . ——— . iy = — o — i —

h & i

mTrrrTTTPTOTTTMHTETMNTENENMNN

nmmwTm

W W W

W W W w W W W W Wi

W L

Rk Wk

Diskette Protection Schemes B-7

CODE PROTECTION

Hiding the code that reads the unusual disk format or checks
for a particular signature has become increasingly popular. Early
schemes rarely tried to hide anything because there were few
people who knew where to look or even what to look for. But it is
clear now that most of the advancements in nibble copiers resulted
from the examination of the actual code that provided the
protection. Signature schemes would have been effective much
longer if it had been possible to hide the code that verified them.
While it is impossible to prevent the code from being found, it can
be made more difficult. The general method used is some sort of
encryption of the code. It is decrypted just before execution, and
either encrypted again or destroyed just after execution.

THE IDEAL PROTECTION SCHEME

There are thousands of programs available for the Apple I1
family of machines, and it is safe to say that they all have been
copied despite a vast array of protection schemes. It seems
reasonable to assume that this fact will not change. Nevertheless,
it may be possible to devise a reasonably effective method. It would
have to address the three primary ways that software is broken—
nibble copiers, hardware boards that copy memory, and what we
call the “front door” method.

NIBBLE COPIERS

Nibble copy programs have an advantage of sorts in that they
need only respond to existing protection methods. This clearly
requires considerable skill but not necessarily creativity. In
fairness though, it should be noted that at least one of the nibble
copiers has included capabilities that may effectively deal with yet
to be created protection schemes. The best that one should hope for
is a protection method that requires parameters to be input by the
user of the copier. If the method could be varied so that each
variation required a different set of parameters, it would be con-
sidered a victory.

B-8 Beneath Apple ProDOS

HARDWARE BOARDS

It is not possible through software to detect the presence of these
boards, nor prevent them from saving an image of memory onto a
disk. For this reason, they are particularly effective with
programs that are totally loaded into memory and require no
additional disk accesses. The only good defense is to never have the
entire program in memory at one time. While this could create
some difficulties such as decreased performance for particular
programs, it is nevertheless necessary for single program
products. Modular software requiring constant disk access may
already provide sufficient protection.

FRONT DOOR METHOD

The process by which a disk is loaded into memory is well
defined for normal disks. Certain facts remain true of protected
disks regardless of the method employed. First the disk must
contain at least one sector (Track 0, Sector 0) which can be read by
the program in the PROM on the disk controller card. Second the
code that reads the protected disk must be on the disk. This means
that it is possible to trace the boot process by disassembling the
code involved in each step of that process. While this can be a
formidable task, it is nevertheless theoretically possible to break
all protection schemes with this method. The main defense against
use of this method is to make it require a great deal of time to
accomplish. This could primarily be done in several ways.

One way is to write the code in separate modules or layers.
Each layer typically decodes the next layer and recodes the
previous layer. It is also vital to verify critical layers to ensure
they have not been patched. A second way is to use an interpreted
language which introduces an additional level of obscurity and a
considerable amount of additional code. Neither of these can be
entirely effective, but are important nevertheless.

w w @ oo o AN NENNNENTNENN W
v......____.._.__._._..__..._.._....________.__._..__.._.___———-—-—-—I_I—I—I-I—-

i W

N/

ul

|

L

W L W W U

W W W www N W W W

L VY W ¥

M

APPENDIX C

"NIBBLIZING

This appendix covers in great detail the encoding of data
(nibblizing) on the Disk II family of drives (Disk II, Ile, and Il¢).
Some of this discussion may relate in a general way to encoding
techniques on other computers made by Apple. But the details
relate specifically to ProDOS and its device driver for a Disk II (or
equivalent).

Before starting an explanation of encoding, it is fair to ask why
data must be encoded at all? It seems reasonable that the data
could simply be written to the disk as it is without any encoding.
The: reason this can’t be done involves the hardware itself. Apple’s
design of the original Disk II was innovative and used a unique
method of recording the data. While this allowed Apple to produce
an exgellent product, it did require some additional work to be
done in software. It is not possible to read all 256 possible byte
values from a diskette. This was clearly not an insurmountable
problem, but it did require that the data stored on the disk be
restricted to bytes with certain characteristics.

ENCODING TECHNIQUES

' Three different techniques have been used. The first one, which
is currently used in Address Fields, involves writing a data byte as
two d?sk bytes, one containing the odd bits, and the other
containing the even bits. This method is often referred to as “4 and
4’.’ encoding, depicting the fact that an 8-bit byte is split into two 4-
bit pieces. It requires two disk bytes for each byte of data, thus 512

C-2 Beneath Apple ProDOS

disk bytes would be needed for each 256-byte sector of data. Had
this technique been used for sector data, no more than 10 sectors
would have fit on a track. This amounts to about 88K of data per
diskette, typical for 5 1/4 inch single sided, single density drives.

Fortunately, other techniques for writing data to diskettes were
devised that allowed more sectors per track. The earliest technique
involved 13 sectors per track. This initial method involved a “5 and
3” split of the data bits, versus the “4 and 4” mentioned earlier.
Each byte written to the disk contains five valid bits rather than
four. This required 410 disk bytes to store a 256-byte sector.
Currently, of course, ProDOS features 16 sectors per track and
uses a “6 and 2” split of data bits thereby requiring 342 disk bytes
per 256-byte sector. This allows 140K of data per diskette.

The two different encoding techniques (“4 and 4” and “6 and 2”)
will now be covered in some detail. The hardware (in order to
insure the integrity of the data) imposes a number of restrictions
upon how data can be stored and retrieved. It requires that a disk
byte have the high bit set (the first bit is a “1”), and in addition, it
can have no more than two consecutive zero bits. Further, each
byte can have at most one pair of consecutive zero bits.

“4 AND 4” ENCODING

The odd-even “4 and 4” technique meets these requirements—
each data byte is represented as two bytes, one containing the even
data bits and the other the odd data bits, (shifted one bit right).
Figure C.1illustrates this transformation. It should be noted that
the unused bits are all set to “1” to guarantee meeting the two
requirements.

1D71Ds1D31Ds
DATA BYTE D7DeD5DADaDzD1Do<:
1D61D41D21D0o

FigureCA4 “4 and 4” Encoding Technique

No matter what value the original data byte has, this technique
insures that the high bit is set and that there cannot be two
consecutive zero bits. The “4 and 4” technique is used to store the
information (volume, track, sector, checksum) contained in the
Address Field. It is quite easy to decode the data, since the byte
with the odd bits is simply shifted left and logically ANDed with
the byte containing the even bits. This is illustrated in Figure C.2.

momm

m
LWV WL W\ WU VY WY ¥

o

e MMM MMM MMM MMM NTND NN

—T

W oW w oW ow W ow W w W e W L

W

Nibblizing C-3

D71 Ds1Ds1Di1
1Ds1Ds1D21Do

D7DeDsD+D3D2D1Do

(shifted left)
AND

Figure C.2. “4 and 4” Decoding Technique

.It is important that the least significant bit is a 1 when the odd-
bits byte is left shifted. The entire operation is carried out in the
device driver for the Disk II.

“6 AND 2” ENCODING

The major difficulty with the above technique is that it takes up
a lot of room on the track. Since each disk byte actually contains
only four bits of real data, half the bits are wasted. To overcome
Fhis deficiency, the “6 and 2” encoding technique was developed. It
is so named because, instead of splitting the bytes in half as in the
“4 and 4” technique, they are split “6 and 2”. The two bits split off
from each byte are grouped together to form additional 6-bit bytes.
(They are stored in an area called the Auxiliary Data Buffer.) This
means that only two bits are lost in each disk byte. The 6-bit bytes
used take the form XXXXXXO0O and have values from $00 to $FC,
each being a multiple of four, for a total of 64 different values.
Figure C.3 shows the 6-bit bytes.

LOW ORDER
'0 12 3 45 6 7 8 9 AB C D E F
0 77 7 1 ? { 6-BIT BYTES
; ﬁ | /// ‘ [] unusep
4 7/ 7
) S ann
& 7 7
g1 / Y 7
5% 7 7 7 7
s 7 7/
A 7 7R/ |
. 7, 7 7/ jT |
E 7

amn A

Figure C.3 Valid 6-Bit Bytes

|

C-4 Beneath Apple ProDOS

It was necessary to map these 64 6-bit bytes into disk bytes so
that they can be stored on the disk. However, there are 7 2 different
bytes ranging in value from $95 up to $FF that meet the) _
requirements for valid disk bytes (i.e. the high bit set and one pair
of conseeutive zero bits at most). After removing the two reserved
bytes, $AA and $D5, 70 disk bytes remain, and only 64 are needed.

A 233040 o] i wamant wasa intradieed to force the manning to
AN agaitionail reuirciiicriv was iiiui vuuuttis v iy nappiis
be one to one, namely, that there must be at least two adjacent bits
set, excluding bit 7. This produces exactly 64 valid disk bytes. A

table of valid (and invalid) disk bytes is presented in Figure Cd4.

HIGH NIBBLE
M m O O W » ©

[J VALID “DISK” BYTES

RESERVED BYTES

INVALID—Three or More Consecutive Zero Bits
B INVALID—Two Pairs of Consecutive Zero Bits
B INVALID—Lacks Two Consecutive One Bits

Figure C4 Valid “Disk Bytes”

The process of converting 8-bit data bytes to disk bytes isa fairly
involved process. It has three separate components, two of which
we have already mentioned. We will now detail the entire
operation required to convert 256 bytes of data into data suitable_a
for diskette storage. An overview of the process is diagrammed in
Figure C.5.

h \

[V WY WY WU VRN VARV VRV VAT VRV VRV VTRV ¥

m Mo wirmm

/(o o N /W mmom m

™ rm

j

r

ol W ok W W W

i

i

i

Nibblizing C-§
USER USER
DATA —| PRENEBLE | ——| DanA _ WRITE ®
PAGE PAGE ROUTINE — "
\ 1 ,
DISK
SECTOR
AUXILIARY
DATA
BUFFER WRITE
TRANSLATE

TABLE

R @

—‘“l ' ngﬁ&: l\;‘\
t | .

Figure C5a Writing to the Diskette

.....

DISK
SECTOR

AUXILIARY
DATA
BUFFER

READ
TRANSLATE
TABLE

Figure C.5b Reading from the Diskette

THE ENCODING PROCESS

First, the 256 bytes that will make up a sector must be
converted to 342 6-bit bytes. The number 342 results from finding
the total number of bits (256 x 8 = 2048) and dividing by the
number of bits per byte (2048 / 6 = 341.33). Four of the bits are not
used. This operation is done by the “prenibble” routine in the Disk
II device driver. The code that performs this operation is fairly
involved, as it requires a good deal of bit rearrangement. The
results of the operation can however be easily illustrated. Figure
C.6 shows how the Auxiliary Data Buffer is formed. The 256-byte
User Data Page (containing 8-bit bytes), is passed to the Disk II
device driver by ProDOS. Two bits are taken from each byte and
put into the Auxiliary Data Buffer. The bits are rearranged
slightly during this process. The two bits from each byte are
reversed and the order in which they are stored in the Auxiliary
Data Buffer is also reversed. The way in which these bits are
rearranged and then stored is arbitrary—it could have been done
differently. The method chosen can be executed rapidly with a
small amount of code. The 256-byte User Data Page is in fact
unchanged as the bits are copied rather than removed, these bits

C-6 Beneath Apple ProDOS

]

L

USER
DATA
PAGE
BIT POSITIONS
76543210
+00 -]
|
11 B8
|
+55 4 — T
+56 R
E
—y —
E
R
*ABH — — S T
"‘AC : A + :
L |fE
+FF
/ BYTE POSITION REVERSAL
4 UNUSED BITS R
(+100, +101) \ BIT POSITIONS
76543210
$FBOO + 12 3¢ L
= B U
: 4N
: quU
H B
MENEE
$FB55 10
AUXILIARY
DATA
BUFFER

Figure C.6a Forming the Auxiliary Data Buffer

o e Mo MM MMM MMM ®M N X M MW
womowmowwwwoww W oW W w Ww W w w

rar
i

v rm

1 N}

Nibblizing C-7
USER
DATA
PAGE
+00 J N . | A A L
AUXILIARY
DATA
BUFFER
+53 N
$FBOO | o | 11
THYETE $FB02
=
4 1
=Y S —>- o
SFB55
+FE _
+FF i -

Figure C.6b Forming One Byte of the Auxiliary Data Buffer

are ignored (stripped out) when the data is written to the disk. This
double usage of the User Data Page eliminates the need for an
additional buffer. The Auxiliary Data Buffer contains four areas,
one unused and the other three containing segments of the last two
bits of the User buffer as is graphically illustrated.

The result of the first step is 342 6-bit bytes. The next step is that
of creating a simple checksum that will be used to verify the
integrity of the data. Like the Address Field, it also involves
exclusive-ORing the information, but, due to time constraints
during reading bytes, it is implemented differently. The entire
block of data is exclusive-ORed with itself offset by one byte. This
adds one byte, bringing the block of data to 343 bytes. This process
is reversible and, while it cannot aid in recovering damaged data,
it does provide a reasonable check on whether the data has been
read correctly. The operation of exclusive-ORing the data block
with itself is carried out a pair of bytes at a time. This enables the
process to be carried out on the fly, that is, while the data is being

C-8 Beneath Apple ProDOS

— —— DISKBYTED
$FB%5 } eo -
ER — ——~ DISKBYTE
AUXILIARY))
DATA MARARAAR, § ER - — |]
BUFFER Yew — | T | —— oiskeYTESS
SFBO0 Y ER — Bl —— oiskviess
’00 ER — | T | — DISKBYTES?
— R
EOR R
R — | N
R — | S
L
R —
USER E0 A
DATA NAAARAAA J BR — | T
PAGE YR — | E
ER — |,
EOR —* A
Yer —— | B | — DISKBYTESH
Yeom —— | L | — oiskByTE3M4
+FF : E DISK BYTE 342

* Last data byte is used as checksum.

Figure C.7 Writing from Buffers to Disk

read or written. This step and the next are actually done together
and are depicted in Figure C.7. o

The last step is to translate these 343 6-bit bytes to $-b1t dls}<
bytes. This operation is performed using a data table in the Dls}i II
device driver. Figure C.8 shows the mapping of 6-bit bytes to disk

SIX BIT BYTES
012 3 45678 9 ABCDEF

bt

e “DISK” BYTES

™ 0 1 2 34 56 789 ABCDEF
L7 T 7 v

Ly 0 = S

| W ;

H . — ———

) R T

Tt o

]l

TM O O D P ®END N AW 2O

|
N O Y

0

Figure C.8 Relationship of 6-Bit Bytes to Disk Bytes

"Moo o > ®

AT

V)

e —— . —— S W EAES D W

[T VRRT VERNY VARV PR VAT THRT VRNV /T TRV VAT TRRRT TRT |

o o oMo WM MNNTTTMNONN

[

or

in!

mw

1 ST ST LAY LAY WY §

Ty

Nibblizing C-9

bytes in greater detail. Three bytes are highlighted to graphically
show how the translation is made. We see for example the $00
becomes $96, $8C becomes $D3, and $FC becomes $FF.

00<>96 40<>B4 80 <>D6 CO<ED
04 <97 44 -~ B5 84 D7 C4<>EE
08 <—9A 48 < B6 88 <—D9 C8 <—EF
0C<>9B 4C<B7 8C <—DA CC<>F2
10<>9D 50<~>B9 90 —DB D0O<>F3
14 <~ 9E 54 <>BA 94 «>0DC D4 <~F4
18 < 9F 58 <>BB 98 <DD D8 <—>F5 -
1C<— A6 5C<>BC 9C <—>DE DC<—F6
20 <— A7 60<>BD AO0<—DF E0 <> F7
24 < AB 64 <> BE Ad<E5 E4>F9
28 < AC 68 <> BF AB8<—E6 E8 < FA
2€C<>AD 6C<>CB AC<—>E7 EC<—FB
30 < AE 70<CD B0 <>E9 FO<>FC
34 > AF 74<—CE B4 <—EA F4 <>FD
38 «— B2 78<—CF B8 < EB F8 < FE
3C<B3 7C<—D3 BC<>EC FC<>FF
Figure C9 “6 and 2" Write Translate Table

A tabular representation of the same mapping is shown in
Figure C.9. It should be noted that this is in fact a two'way
mapping. When bytes are read from the disk they are converted
back to 6-bit bytes using this same table.

The reason for this transformation can be better understood by
examining how the information is retrieved from the disk. The
read routine must read a byte, transform it, and store it—all in
under 32 cycles (the time taken to write a byte) or the information
will be lost. By using the checksum computation to decode data,
the transformation shown in Figure C.10 greatly facilitates the
time constraint. As the data is being read from a sector, the
accumulator contains the cumulative result of all previous bytes,
exclusive-ORed together. The value of the accumulator after any
exclusive-OR operation is the actual data byte for that point in the
series. This process is diagrammed in Figure C.10.

C-10 Beneath Apple ProDOS

DISKBYTEQ —_—
DISK-BYTE 1 _—
DISKBYTEBS ~——
DISKBYTE86 —
DISKBYTE8? —

DISKBYTE340 —
DISK BYTE 341

—_—

MmMeA>rrmn2Z2>»>o oOXrm>

mrm>»-—

EOR
EOR
} on

} Eor

JE—

]

*

DISK BYTE 342

* | ast data byte is used as checksum.

$FB55
AUXILIARY
DATA

BUFFER
$FBOO
+00

USER

DATA

PAGE

Figure C.10 Reading from Disk into the Buffers

While containing specific information, the preceding discussion
might still be viewed as somewhat of a theoretical presentation.
The follow section will show each stage of the transformation that
takes place as 256 bytes of data are prepared prior to being written
to disk. The data chosen is real data that exists on the ProDOS
System disk which will enable the reader to verify the following

transformation.

JUNIORS GOING TO
TRAVEL HALF WAY A/\ROUND

wow!A LITTLE BIT
GOES A LONG

|

in

x

m m T mmMmmommMmem eyt o mwm

e

.- .FE
Ao e Do

rmn

m

w ww w

Ll

W w w o ow o

(1 VAR VRV §

1Y

i
)

n

m om omwom ow

w mk a w

Nibblizing C-14

STAGE 1

The first stage consists of creating an auxiliary buffer thereby
converting the 256 bytes of data to 342 bytes. Each byte in the
auxiliary buffer is made up of bits from three different bytes of the
original 256-byte data. Please note that the original 256 bytes are
still unchanged. Figure C.11 illustrates the results of stage 1,
highlighting several bytes to aid in following this process.

AUX 1
20 30 1c 30,[FA] F8 0C 68
LIL00100-—72 5504 00 B8 FC oC 20

00 00 80 00 30 BO CO 00
00 40 20 CO CO 30 BO 40
00 90 0C 2C 18 28 00 24
10 00 08 04 80 04 0C 00
8C 0C 00 FO CO 00 30 00
00 80 80 2C CO CO 0C 00
40 20 90 A8 EO 80 40 80
10 08 30 30 38 10 10 20

14 00 0.[8 08 0C
Moo 00 —4-2000- 4]

00 00 03 55 53 45 00 00 03 00 FA 55 53 45
1111100053753 2E 44 49 53 4B 00 52 53 2E 44 49 53 4B 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 C3 27 OD 09 00 06 00 00 C3 27 OD 09 00 06
00 18 01 26 50 52 4F 44 00 18 01 26 50 52 4F 44
4F 53 00 00 00 00 00 00 4F 53 00 00 00 00 00 00
00 00 00 FF 08 00 1F 00 00 00 CO FF 08 00 1F 00
00 3C 00 21 A8 00 00 00 00 3C 00 21 A8 00 00 00
00 21 00 20 21 A8 00 00 00 21 00 20 21 A8 00 00
02 00 2C [42] 41 53 49 43 o 02 00 2C 42 41 53 49 43
0101100 T2E 23[9 53 54 45 4D 00 010000 2E 53 59 53 54 45 4D 00
00 00 FF 27 00 15 00 00 00 00 FF 27 60 15 00 00
28 00 6F A7 00 00 0O 00 28 00 6F A7 00 00 00 00
21 00 20 6F A7 00 00 02 21 00 20 6F A7 00 00 02
00 25 46 49 4C 45 52 00 00 25 46 49 4C 45 52 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 FF 3C 00 33 00 00 64 00 FF 3C 00 33 00 00 64
00 21 A8 00 00 00 00 21 00 21 A8 00 00 00 00 21
6E Ol 21 A8 00 00 02 00 6E 01 21 A8 00 00 02 00
27 F§]4F 4E 56 45 52 54 27 43 4F 4E 56 45 52 54
00 [00] 00 00 00 00 00 00 Go— 00 00 00 00 00 00 00 00
111111 6F 00 23 00 01 50 00 000000 FF 6F 00 2A 00 01 50 00
61 A7 00 00 00 00 21 00 61 A7 00 00 00 00 21 00
20 61 A7 00 00 02 00 27 20 61 A7 00 00 02 00 27
53 54 41 52 54 55 50 00 53 54 41 52 54 55 50 00
00 00 00 00 00 00 00 FC 00 00 00 00 00 00 00 FC
99 00 18 00 C9 2C 00 4F 99 00 18 00 C9 2C 00 4F
A7 00 00 00 00 21 01 08 A7 00 00 00 00 21 01 08
4F A7 00 00 02 00 25 4D 4F A7 00 00 02 00 25 4D
4F 49 52 45 00 00 00 00 4F 49 52 45 00 00 00 00
00 00 00 00 00 00 FC [BI] 00 00 00 00 00 00 FC Bl
ER 101100@!——J
USER 1 USER 1

Figure C.411 Example: Forming the Auxiliary Data Buffer

C-12 Beneath Appie ProDOS

STAGE 2

The second stage is to create a checksum by exclusive-ORing the
entire 342-byte data block with itself, offset by one byte. If it were
not offset, the results would be undesirable (all zeroes). An
additional byte is created in this process. While the last byte is in
fact unchanged by the process and is independen’(cﬂ of the preceding
\ anon in Kioure (012

.4~ 14
aata, it serves as ine ¢necksum as seen in

AUX1 AUX 2
ot ———+ 00000000
Zof30 1c 30 B4 F8 oc eg EOR 00100000 20) 10 2¢ 2C D4 IC F4 64
24 8C 04 00 B8 FC 0C 20 00100000 4C A8 88 04 BS 44 FO0 2C
00 00 80 00 30 BO CO 00 26] 20 00 80 80 30 80 70 CO
00 40 20 CO CO 30 BO 40 00 40 60 EO 00 FO 80 FO
00 90 0C 2C 18 28 00 24 40 90 9C 20 34 30 28 24
10 00 08 04 80 04 OC 00 34 10 08 0C 84 84 08 OC
8C 0C 00 FO CO 00 30 00 8C 80 0OC FO 30 CO 30 30
00 80 80 2C CO CO OC 00 00 80 00 AC EC 00 CC.0C
40 20 90 A8 EO 80 40 80 48 ig gg gg gg gg %g gg
10 08 30 30 38 _1Q 10 20 1000 9
14 00 00 84 gggguoo 34 14 00 84 8C
00000100
[04]
00 00 03 00 FA 55 53 45 0C 00 03 03 FA AF 06 16
52 53 2E 44 49 53 4B 00 17 01 7D 6A OD 1A 18 4B
00 00 00°00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00° 0O 00
00 00 C3 27 0D 09 00 06 00 00 C3 E4 2A 04 09 06
00 18 01 26 50 52 4F 44 : 06 18 19 27 76 02 1D OB
4F 53 00 00 00 00 00 00 0B 1C 53 00 00 00 00 00
00 00 00 FF 08 00 1F 00 00 00 00 FF F7 08 1F 1F
00 3C 00 21 A8 00 00 00 00 3C 3C 21 89 A8 00 00
00 21 00 20 21 A8 00 00 00 21 21 20 01 89 A8 00
02 00 2C 42 41 53 49 43 02 02 2C 6E 03 12 1A OA
2E 53 59 53 54 45 4D 00 6D 7D OA OA 07 11 08 4D
00 00 FF 27 00 15 00 00 00 00 FF D8 27 15 15 00
28 00 6F A7 00 00 00 00 28 28 6F C8 A7 00 00 00
21 00 20 6F A7 00 00 02 21 21 20 4F C8 A7 00 02
00 25 46 49 4C 45 52 00 02 25 63 OF 05 09 17 52
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 FF 3C 00 33 00 00 64 00 FF C3 3C 33 33 00 64
00 21 A8 00 00 00 00 21 64 21 89 A8 00 00 00 21
6E 01 21 A8 00 00 02 00 4F 6F 20 89 A8 00 02 02
27 43 4F 4E 56 45 52 54 27 64 0C 01 18 13 17 06
00 00 00 00 00 00 00 00 54 00 00 00 00 00 00 00
FF 6F 00 2A.00 01 50 00 FF 90 6F 2A 2A 01 51 50
61 A7 00 00 00 00 21 00 61 C6 A7 00 00 00 21 21
20 61 A7 00 00 02 00 27 20 41 C6 A7 00 02 02 27
53 54 41 52 54 55 50 00 74 07 15 13 06 01 05 50
00 00 00 00 00 00 00 FC 00 00 00 00 00 00 00 FC
99 00 18 00 C9 2C 00 4F 65 99 18 18 C9-E5 2C 4F
A7 00 00 00 00 21 01 08 E8 A7 00 00 00 21 20 09
4F A7 00 00 02 00 25 4D 47 E8 A7 00 02 02 25 68
4F 49 52 45 00 00 00 02 06 1B 17 45 00 00 00
00 00 00 00 00 00 [FCI(BI] 11111l00 00 00 00 00 00 00 FC

EOR™10110001

01001101 E%?

4D J

g USER 2

USER 1

Figure C.42 Example: The Exclusive ORing Operation

m m 8

m

m m

mome M

1 T " rmn mr

ap,

momomom o e m

J

w w X w w

w w

1 VAR VIRV VAT VARV VARV VARV VIRV VRNV VRV 7

)\ 1

|

1 SN W1 W

Nibblizing C-13

STAGE 3

The third and last stage is to translate the 343 6-bit bytes into
disk bytes. This is done with a simple lookup table as shown in
Figure C.13. Please note that during this step the last two bits are
removed from all bytes before using the table.

AUX 2 AUX 3
WRITE
10 ANDFC=10 TRANSLATE
20 ﬁ& 2C 2C D4 1C F4 64 TABLE A7 B0 AD AD F4 A6 FD BE
4C A8 88 04 B8 44 FO 2C 00 <>9 B7 E6 D9 97 EB B5 FC AD

A an 30 an
20 00 80 80 30 80 AE

Co 04 <57 A7 96 D6
00 40 60 EO 00 FO 80 FO 08 <>9A 96 B4 BD F7 96 FC D6 FC
40 90 9C 20 34 30 28 24 0C<>98 B4 DB DE A7 AF AE AC AB
34 10 08 0C 84 84 08 0OC 10 <90 AF 9D 9A 9B D7 D7 9A 9B
8C 80 0C FO 30 CO 30 30 DA D6 9B FC AE ED AE AE
00 80 00 AC EC 00 CC 0C : 96 D6 96 E7 FB 96 F2 9B
40 60 BO 38 48 60 CO CO B4 BD E9 B2 B6 BD ED ED
90 18 38 00 08 28 00 30 DB 9F B2 96 9A AC 96 AE

e Fe a2} nco ne MnN
70 D6 D6 CD ED

34 14 00 84 8C 04 : AF 9E 96 D7 DA 97
4BANDFC=48——__ 45 " pg

0C 00 03 03 FA AF 06\16 : 9B 96 96 96 FE E7 97 9E

17 01 7D 6A 0D 1A 18 [4B) : 9E 96 D3 BF 9B 9F OF [B6

00 00 00 G0 00 00 00 00 : 96 96 96 96 96 96 96 96

(Ve
(o2l

00 00 00 00 00 00 00 0O
00 00 C3 E4 2A 04 09 06
06 18 19 27 76 02 1D OB
0B 1C 53 00 00 00 00 00 B9 96 96 96 96 96
00 00 00 FF F7 08 1F 1F 96 96 96 FF FD 9A A6 A6
00 3C 3C 21 89 A8 00 00 96 B3 B3 A7 D9 E6 96 96
00 21 21 20 01 89 A8 00 96 A7 A7 A7 96 D9 E6 96

96 96 96 96 96 96 96
96 ED F9 AC 97 9A 97
97 9F 9F AB CE 96 A6 9A

\t=}
=)

o
>
>
=

02 02 2C 6E 03 12 1A 0A : 96 96 AD CB 96 9D 9F 9A
6D 7D OA OA 07 11 08 4D : CB D3 9A 9A 97 9D 9A B7
00 00 FF D8 27 15 15 00 = B0«=E9— 96 96 FF F5 AB 9E 9E 96
28 28 6F C8 A7 00 00 00 : AC AC CB EF E5 96 96 96
21 21 20 4F C8 A7 00 02 : A7 A7 A7 B7 EF E5 96 96
02 25 63 OF 05 09 17 52 : 96 AB BD 9B 97 9A 9E B9
00 00 00 00 00 00 00 00 : 96 96 96 96 96 96 96 96
00 FF C3 3C 33 33 00 64 : 96 FF ED B3 AE AE 96 BE
64 21 89 A8 00 00 00 21 FO <~FC BE A7 D9 E6 96 96 96 A7
4F 6F 20 89 A8 00 02 02 F4 <>FD B7 CB A7 D9 E6 96 96 96
27 64 0C 01 18 13 17 06 F8 < ~FE AB BE 9B 96 9F 9D 9E 97
54 00 00 00 00 00 00 00 FC ~>FF BA 96 96 96 96 96 96 96
FF 90 6F 2A 2A 01 51 50 FF DB CB AC AC 96 B9 B9
61 C6 A7 00 00 00 21 21 BD EE E5 96 96 96 A7 A7
20 41 C6 A7 00 02 02 27 A7 B4 EE E5 96 96 96 AB
74 07 15 13 06 01 05 50 CE 97 9E 9D 97 96 97 B9
00 00 00 00 00 00 00 FC 96 96 96 96 96 96 96 FF
65 99 18 18 C9 ES5 2C 4F BE DD 9F 9F EF F9 AD B7
E8 A7 00 00 00 21 20 09 FA ES 96 96 96 A7 A7 9A
47 E8 A7 00 02 02 25 68 B5 FA E5 96 96 96 AB BF
02 06 1B 17 45 00 00 00 96 97 9F 9E B5 96 96 96
00 00 00 00 00 00 FC 4D 96 96 96 96 96 96 FF B7
B1 AND FC = B0 ———H
USER 2 USER 3

Figure C.13 Example: Translation, the Final Step Before Writing

4

l’-;iS
EiS
EiS
Eiﬂ
Eii
EiS
Eiﬂ
Eia
=y
E!S
ol
E!E
E‘!ﬂ
E!E
E!ﬂ
E!E
!E!ﬂ
Eo-
| -
;| =
;|
i -
Lo

e
I\

}

APPENDIX D

THE LOGIC STATE SEQUENCER

Because there is such a close relationship between the disk
hardware and the software that controls it, it seems appropriate to
examine the firmware that directly responds to the software, that
is, the Logic State Sequencer ROM. The code on this ROM actually
controls the reading and writing of bits. While the information
presented here should enable one to understand the process
involved, it is nevertheless intended to be an overview and not a
complete analysis.

The Disk 11 family of drives uses a unique method of storing
data on a disk. They use a method named GCR (Group Code
Recording), unlike most current disk drives that use FM
(Frequency Modulation) or MFM (Modified Frequency
Modulation). This enables writing data bytes without the use of
clock bits and thereby greatly increases the amount of data that
can be stored on a given track. Apple has recently put the Disk
Controller Card into a Custom Integrated Circuit. Versions of the
Disk Drive Controller Unit (IWM—Integrated Woz/Wendell
Machine) are now used on the Apple Ilc and the Macintosh. The
following discussion is based on the original controller card, but
should apply functionally to the new chip as well.

D-2 Beneath Apple ProDOS

LOGIC STATE SEQUENCER ROM

The Logic State Sequencer is a 256-byte ROM on the disk
controller card. The “program” stored there controls the data
register, providing the actual means of reading and writing bits.
The program on the ROM is unlike traditional software such as
BASIC or machine language—it is a simple language with only six
different functions or commands available. What makes it
different and difficult to follow is how the flow of the program is
determined. Traditional languages typically execute instructions
in sequence until they encounter a control statement (such as
GOTO or GOSUB) that indicates a new location. In the state
machine, each byte is both a command (operating on the data
register) and a control statement. What is unique is that the
location of the next command to execute is only partially
determined by the control statement.

The program flow is additionally controlled by four external
inputs, two provided by software and two provided by hardware.
The software inputs are controlled by four memory locations,
$COS8C through $CO8F. The locations are slot dependent (adding
the slot number times 16 to the base address gives the appropriate
address). Because of the nature of the state machine (timing), this
is normally done with the X-register containing the offset (i.e. the
slot number times 16). The two inputs provided by the hardware
are the presence or absence of a read pulse and the status of the
high bit of the data register.

Each of the 256 bytes in the ROM is an available location that
can be accessed with the appropriate control statements. Eight
bits are needed to indicate all of the locations. Four of these bits are
provided by each byte in the ROM and the remaining four bits are
provided by the external inputs described earlier. The four bits in
the control statement contained in each byte of the ROM indicate
what will be called for the next “sequence,” and the four bits from
the external inputs indicate what will be called for the next “state.”
Figure D.1 depicts the ROM as a two dimensional array, with
“sequence” and “state” each providing one dimension of the
address of a given element.

r o e @ oMo o oMo RN NE MW
e e - —— v e e mE B EEEE NS N B

=

|

w

TRV VRRNT VAT TR T- VR - TR TR T TRV TR F TR F TR T TRV |

T K

inm 1

l

im im im' im im im

The Logic State Sequencer D-3

STATE

| 1

SEQUENCE

256
ROM

LOCATIONS

‘FigureD.A Sequencer ROM is Addressed by a 4-Bit Input (STATE)
and a 4-Bit Control Statement (SEQUENCE)

The 16 sequences are simply the hex numbers 0 through F, and
are supplied by the high order nibble of each byte in the ROM. The
low order nibble is the command number. For example, the byte
“18” would execute command number 8 (no operation) and proceed
to sequence 1. Each byte or instruction takes two cycles to execute,
but the state machine is running twice as fast as the 6502, so only
one 6502 cycle per state machine instruction is required. The six

available commands that control the data register are listed in
Table D.1.

TableDA Commands Which Control the Data Register.

DATA REGI

CODE|OPERATION BEFORE AF§I:II‘£{R
0 Clear XXXXXXXX* 00000000
8 No operation ABCDEFGH |ABCDEFGH
9 Shift left (bringing in a 0) ABCDEFGH |BCDEFGH0
A Shift right (WRITE protected)| ABCDEFGH 11111111

(not WRITE protected) ABCDEFGH |0ABCDEFG
B Load XXXXXXXXHYYYYYYYYH
D Shift left (bringing ina 1) ABCDEFGH |BCDEFGH1

*XXXXXXXXand YYYYYYYY denote valid, but different bytes.

f

|
1

D-4 Beneath Apple ProDOS N The Logic State Sequencer D-5
R
The logic of the state machine is difficult to follow even though _ To make the task easier, the contents of the ROM will be
relatively few operations are carried out on the data register. s ' n analyzed in four parts, corresponding to the four software states.
Figure D.2 graphically illustrates the logic. _ As mentioned above, the locations $CO8C—CO8F (plus the slot
T = = number times 16) partially control the state machine. These four
STATE B locations control two switches, Q6 and Q7. If one of these addresses
ot w isaccessed, the appropriate switch will be set as indicated in Table
Q7 Q7) D.2.
s
OFF ON - 3 Table D2 State Switches
r 9
Q6 Q6 Q6 Q6] SWITCH
ON OFF ON OFF O | ADDRESS| Q6 [Q7
_ - $C08C OFF| —
L $C08D ON| —
0 RN A $COSE — |oFF
1 R $CO8F — |ON
2 T . 4
3 The first state examined will be with switch Q6 on and Q7 off.
4 T = This can be described as checking the write protect switch and
- initializing the state machine for writing. Table D.3 lists the
w o i - = contents of this portion of the state machine ROM. All the
Cé) 6 - instructions are identical ($0A), each shifting the data register
w7 N | right (command A), bringing in the status of the write protect
8 8 - switch, and then going to sequence 0. This readies the hardware
o B for writing since it is necessary to be in sequence 0 in order to write
w 9 - correctly.
A :; El HHEET I.L 3
B _
4
. : =
D |
E . a
- N |
Lo owd
CLR SR C
by
[J Nop i))
|
SLO B su
Lo
FigureD2 Sequencer Commands -
;o -

i

|

V)

D-6 Beneath Apple ProDOS

Table D3 STATE: @ ON and Q7 OFF (Check Write Protect)

HIGH BIT CLEAR | HIGH BIT SET
NO NO

SEQUENCE| PULSE|PULSE PULSE PULSE
0 0A 0A 0A 0A
1 0A 0A 0A 0A
2 0A 0A 0A 0A
3 0A 0A 0A 0A
4 0A 0A 0A 0A
5 0A 0A 0A 0A
6 0A 0A 0A 0A
7 0A 0A 0A 0A
8 0A 0A 0A 0A
9 0A 0A 0A 0A
A 0A 0A 0A 0A
B 0A 0A 0A 0A
C 0A 0A 0A 0A
D 0A 0A 0A 0A
E 0A 0A 0A 0A
F 0A 0A 0A 0A

The next state examined is with switches Q6 and Q7 off (see
Table D.4). This reads data from the disk, shifting in the appro-
priate bits as a “Pulse” or “No Pulse” is detected by the hardware.
Additionally, once the high bit of the data register is set, the data is
retained until a read pulse is detected (0 bits or “No Pulses” are
ignored).

When switch Q7 is turned on (write mode), the presence or
absence of a read pulse is ignored. For this reason, the ROM
contains two identical 64-byte sections. Therefore, Table D.5 is
presented in a slighly different format. Only two operations are
carried out, loading the data register from the data bus, and
shifting the data out one bit at a time, so that it can be written to
the disk. Note that only sequences 2 and A carry out any action on
the data register.

- ' S A A sBB s s (NS BN (B B L NI AR AR L

\n

(= g m m (@ (X (W (W

E44

W w ww WL w3 W

i m mmwmwmnw W w W

!

i1

The Logic State Sequencer

D-7

TableD4 STATE: Q6 OFF and Q7 OFF (Read)

HIGH BIT CLEAR | HIGH BIT SET
NO NO
SEQUENCE| PULSE[PULSE PULSE[PULSE
0 18 18 18 18
1 2D 2D 38 38
2 D8 38 08 28
3 D8 48 48 48
4 D8 58 D8 58
5 D8 68 D8 68
6 D8 78 D8 78
7 D8 88 D8 88
8 D8 98 D8 98
9 D8 29 D8 A8
A CD BD D8 B8
B D9 59 D8 C8
C D9 D9 D8 A0
D D8 08 E8 ES8
E FD FD F8 F8
F DD 4D E0 EOQ
TableD5 State: Q7 ON (Write)
Q6 OFF Q6 ON
HIGH BIT | HIGH BIT
SEQUENCE|CLEAR|SET|{CLEAR|SET
0 18 18 18 18
1 28 28 28 28
2 39 39 3B 3B
3 48 48 48 48
4 58 58 58 58
5 68 68 68 68
6 78 78 78 78
7 08 88 08 88
8 98 98 98 98
9 A8 A8 A8 A8
A B9 B9 BB BB
B C8 C8 C8 C8
C D8 D8 D8 D8
D ES8 ES8 ES8 ES8
E F8 F8 F8 F8
F 88 08 88 08

D-8 Beneath Apple ProDOS

This discussion should provide a general understanding of the
Logic State Sequencer. For a comprehensive look at the disk
hardware, an excellent source is Understanding the Apple II by
Jim Sather, published by Quality Software.

SEQUENCER EXAMPLE

Table D.6 follows the state machine through a number of steps
during the read process. It is assumed that a $D5 has just been

LT Qitu 4D v

Clawa ITxistl

read and is now in the data register. T

he state machine is

executing the instruction at column 4 and sequence 2 of Table D.4
and will continue to loop until a read pulse is detected. The

VeTs Yo)

ANTNAD/Q T

instruction being executed is a $28 which performs a NOP (8 =No
OPeration) and remains at sequence 2. In our example, the next
byte to be read is an $AA (only the first 5 bits are shown in Table
D.6). If the reader can understand this example, it should be
possible to construct a similar table for any other read or write
example. Note that the column number is controlled by the
contents of the MSB of the data register and the presence or

absence of a Read

SAY,
9 D

Pulse.

HOW MUCH
ON WORTH?

L\ L

S| ST Y S| VI VR Vi VRV VRNV VR VRN V' ¥

m [

m m wm

= g, e qm qw (m (@ (] (@

 r

J

w o LW W

" T’ ¥

| Y §

The Logic State Sequencer D9

TableD6 ASequencer Example

[DATA READ| REFERTOTABLEDA __[NEXT
STEPREGISTERPULSECOLUMNBSEQUENCHBY TESEQUENCE[ACTION*
1 11010101 NO 4 2 28 2 NOP
2 [11010101 | YES 3 2 08 0 NOP
3 [i1010101 | NO 4 0 18 1 NOP
4 11010101 NO 4 1 38 3 NOP
5 [11010101 | NO 4 3 48 4 NOP
6 |t1010101 | NO 4 4 58 5 NOP
7 [11010101 | NO 4 5 68 6 NOP
8 [1010101 | NO 4 6 78 7 NOP
9 [tr010101 | NO 4 7 88 8 NOP
10 [11010101 | NO* 4 8 98 9 NOP
11 [t1010101 | NO 4 9 A8 A NOP
12 11010101 | NO 4 A BB B NOP
13 (11010101 | NO 4 B 8 C NOP
14 [11010101 | NO 4 C A0 A CLR
15 (00000000 | NO 2 A BD B SL1
16 (00000001 | NO 2 B 59 5 SLO
17 00000010 NO 2 5 68 6 NOP
18 (00000010 | YES 1 6 D8 D NOP
19 00000010 | NO 2 D 08 0 NOP
20 [00000010 | NO 2 0 18 1 NOP
21 (00000010 | NO 2 1 2D 2 SL1
22 00000101 | NO 2 2 38 3 NOP
23 [00000101 | NO 2 3 48 4 NOP
24 00000101 NO 2 4 58 5 NOP
25 [00000101 | NO 2 5 68 6 NOP
26 (00000101 | NO* 2 6 78 7 NOP
27 00000101 | NO 2 7 88 8 NOP
28 |oooo0101 | NO 2 8 98 9 NOP
29 00000101 NO 2 9 29 2 SLO
30 00001010 | NO 2 2 38 3 NOP
31 00001010 | NO 2 3 38 4 NOP
32 100001010 | NO 2 4 58 5 NOP
33 00001010 NO 2 5 68 6 NOP
34 00001010 YES 1 6 D8 D NOP
35 00001010 NO 2 D 08 0 NOP
36 [00001010 | NO 2 0 18 1 NOP
37 [00001010 | NO 2 1 2D 2 SL1
38 [00010101 | NO 2 2 38 3 NOP

*Normal time to detect a read pulse (if one exists).

**See Table D.1. Notation used here is borrowed from Understanding the Apple IT
by Jim Sather.

Notes

m m m m m m W W

o e m

[S0R =R = <O U £

afi

mmNw e W

:

W W L W W

& a & W

W i k0 WIk KRR W R W

LG G

N

APPENDIX E

ProDOS, DOS AND SOS

This appendix is intended to assist the reader who is moving
programs and data between the ProDOS, DOS and SOS operating
systems on Apple IIs and Apple IIs. It is divided into two sections.
One deals with the possible problems one might encounter moving
from DOS 3.3 or DOS 3.2 to ProDOS with a particular emphasis on
differences in BASIC programming on the two systems. The other
section discusses the areas in which ProDOS and SOS are alike,
and explains ways in which programs may be written which will
run with minimal modification on either system.

CONVERTING FROM DOS TO ProDOS

The following is a list of potential problem areas when
converting programs from DOS 3.3 or DOS 3.2 to ProDOS:

1. Apple DOS allows 30 character file names with embedded
special characters and blanks. ProDOS restricts file names to
15 characters. The first must be a letter, and the rest may be
letters, numbers or periods. No blanks or other special
characters (other than period) may be in a ProDOS file name.

2. The following DOS commands are not supported by ProDOS:
MON, NOMON, MAXFILES, INT, FP, and INIT. MON and
NOMON may be entered under ProDOS but they have no
effect.

3. Under ProDOS, the VERIFY command does not read through
a file to check it for I/0O errors. It only verifies the file’s
existence.

E-2 Beneath Apple ProDOS

10.

11.

12.
13.

14.

Although the V keyword is syntactically permittgd on ProDOS
file commands, it is not supported. Programs which depend
upon volume numbers must be changed to use volume names
When the APPEND command is used on a “sparse” random
file, it will position at the EOF position, not to the first “hole.”

. CHAINing between BASIC programs is now supported with a

command rather than by BRUNing a separate file.

. The most significant bit of each byte is off in text files under

ProDOS. Tt is on in DOS text files. For example, a blank in

L IUL/UM. LU 1D Vis (VSO RV oP, ca. 'O

DOS was stored as $A0. Under ProDOS, it is stored as $20.

. Under DOS, many programs use statements of the form:

PRINT CHR$(13); CHR$(4);“dos command to be executed”
This will not work under ProDOS. The CHR$(4) must be the

first item in the PRINT list. The CHR$(4) need not be the first
thing on an output line, just the first thing in a PRINT
statement.

. DOS supports up to 16 simultaneously open files. ProDOS

allows only 8.

Less memory is available to BASIC programmers under
ProDOS. With no files open, the amount of memory availab_le
is equivalent to that available under DOS with three open files.
Each open file uses 1024 bytes under ProDOS. Under DOS,
only 595 bytes are used per file.

HIMEM should always be set to point to an even page
boundary under ProDOS (a multiple of 256).

ProDOS does not support Integer BASIC programs.

The “HELLO?” file name must be “STARTUP” on ProDOS.
DOS allows the user to specify any name for the first file run.
All low level assembly language interfaces are drastically
different under ProDOS. The MLI must be called to perform
disk accesses wherever the DOS File Manager and RWTS
were used in a program. There is no exact equivalent to RWTS
in ProDOS, so programs which access the disk by track and
sector must be converted to use the READ and WRITE
BLOCK MLI calls.

T T M W

1}

w

o

m m m

e pe oo opnopmon

- A | L

ar

J

W W wwwwwWwWwWwWwd«&dWww

W ¥

Ik W W

&

ProDOS, DOSand SOS E-3

WRITING PROGRAMS FOR ProDOS AND SOS

When writing programs which are to run on either ProDOS or
SOS, consider the following:

1.

2.

ProDOS and SOS volumes are identical in format. Either
system can read the other’s diskettes.

Block 1 0on a ProDOS volume contains the SOS boot loader.
This program is loaded instead of Block 0 when booted on an
Apple III. It searches the directory for SOS.KERNEL and
loads it instead of ProDOS. This means that a diskette can be
constructed which wiil boot either ProDOS or SOS and run an
application on either an Apple II or Apple III.

SOS allows up to 16 concurrently open files in BASIC.
ProDOS allows only 8.

SOS uses different file types than ProDOS. A ProDOS CATA-
LOG on a SOS diskette will produce hex codes for file type but
this is normal. Table E.1 shows all ProDOS and SOS file types
currently defined.

SOS memory management allows programs to allocate and
free segments of memory by making system calls. Under
ProDOS, programs must manage memory themselves by
marking pages free or in use in the System Global Page.

SOS system ealls are, for the most part, very similar to
ProDOS MLI calls. The areas in which differences occur are:
ProDOS filing calls apply only to block devices (disks), but
SOS filing calls apply to all devices; GET_FILE_INFO under
SOS gives the EOF position of a file, whereas ProDOS’s
GET_FILE_INFO does not; SOS’s SET_MARK and
SET_EOF positions may be given as relative to the current
position, but ProDOS requires them to be absolute.

. SOS interrupts are prioritized and managed by device drivers;

however, ProDOS interrupts are polled sequentially and are
managed by interrupt handlers installed using MLI calls.

E-4 Beneath Apple ProDOS E
E
Table E4 ProDOS and SOS File Types
b
HEX ProDOS
TYPE |NAME |0S MEANING E
$00 both Typeless file 2
$01 both Bad blocks file
$02 SOS PASCAL code file B
$03 SOS PASCAL text file
$04 TXT both ASCII text file E
$05 SOS PASCAL text file
306 BIN both Binary file E
$07 SOS Font file
$08 SOS Graphics screen file E
$09 SOS Business BASIC program file ‘
$0A SOS Business BASIC data file E
$0B SOS Word processor file -
$0C SOS SOS system file 3
$0D-$0E SOS SOS reserved for future use
$O0F DIR both Directory file E
$10 SOS RPS data file
$11 SOS RPS index file 3
$12-318 SOS SOS reserved for future use :
$19 ADB ProDOS | AppleWorks data base file 3
$1A AWP ProDOS | AppleWorks word processing .
file
$1B ASP ProDOS | AppleWorks spreadsheet file 32
$1C-$BF SOS SOS reserved for future use 3
$CO-3EE ProDOS | ProDOS reserved for future use -
SEF PAS ProDOS | ProDOS PASCAL file 3
$F0 CMD ProDOS | Added command file -
SF1-$F8 ProDOS | ProDOS user defined file types W
$F9 ProDOS | ProDOS reserved for future use ~
SFA INT ProDOS | Integer BASIC program file .
$FB IVR ProDOS | Integer BASIC variables file -
$FC BAS ProDOS | Applesoft BASIC program file v
$FD VAR ProDOS | Applesoft BASIC variables file -
$FE REL ProDOS { EDASM relocatable object module v
file ~
$FF SYS ProDOS | System file v

=

i

L84

|

(| W1 WV U)

[V VAV VOV VIV VRV VIV VRV VI VIR VIRV VR VRR" TR ViRV VR V" VR VRV)

| W §

accesstime. The time required to
locate and read or write dataon a
direct access storage device, such as
a diskette drive.

address. The numeric location of a
piece of data in memory, usually
given as a hexadecimal number
from $0000 to $FFFF (65,535
decimal). A disk address is the
location of a data sector, expressed
in terms of its track and sector
numbers.

algorithm. A sequence of steps
which may be performed by a
program or other process, which
will produce a given result.

alphanumeric. An alphabetic
character (A-Z) or a numeric digit
(0-9). In the past, the term referred
to the class of all characters and
digits.

analog. Having a value which is
continuous, such as a voltage or
electrical resistance, as opposed to
digital.

. AND. The logical process of

determining whether two bits are
both “1”s.0 AND 1 results in 0
(false), 1 AND 1 results in 1 (true).

arm. The portion of a disk drive
which suspends the read/write head
over the disk’s surface. The arm can
be moved radially to allow access to
different tracks.

GLOSSARY

ASCII (American Standard Code
for Information
Interchange). A hexadecimal to
character conversion code
assignment, such that the 256
possible values of a single byte may
each represent a alphabetic,
numeric, special, or control
character. ASCII is used when
interfacing to peripherals, such as
keyboards, printers, or video text
displays.

assembly language. Alsoknown as
machine language. The native
programming language of the
individual computer. Assembly
language is oriented to the machine,
and is not humanized, as is BASIC,
PASCAL, or FORTRAN. An
assembler is used to convert
assembly language statements to an
executable program.

bank switched memory. Also
called the language card. An
additional 16K of memory which
may only be accessed by “throwing”
hardware switches to cause portions
of the bank switched memory to
temporarily replace the Monitor
ROM memory in the machine. This
is necessary because an Apple can
only address 64K, and all addresses
are already used with 48K, 4K of
I/0 and 12K of Monitor ROM.

G-2 Beneath Apple ProDOS

base. The number system in use.
Decimal is base 10, since each digit
represents a power of 10
(1,10,100,...). Hexadecimal is base
16(1,16,256....). Binary is base 2
(1,24.8,...).

BI (BASIC Interpreter). Also
called the BASIC System Program.
The BI accepts user commands such
as CATALOG and LOAD, and
translates them into calls to the
ProDOS Machine Language
Interface (MLI).

binary. A number system based
upon powers of 2. Only the digits 0
and 1 are used. For example, 101 in
binary is 1 units digit, 0 twos, and 1
fours, or 5 in decimal.

bit cell. The space on a diskette
which passes beneath the
read/write head in a 4-microsecond
interval. A bit cell contains a signal
which represents the value of a
single binary 0 or 1 (bit).

bit map. A table where each binary
bit represents the allocation of a
unit of storage. ProDOS uses bit
maps to keep track of memory use
(System Bit Map) and of disk use
(Volume Bit Map).

bit slip marks. Theepilogueof a
disk field, used to double check that
the disk head is still in read sync
and the sector has not been
damaged.

block. An arbitrary unitof disk
space composed of two sectors or 512
bytes. ProDOS reads and writes a
block at a time to improve
performance and to allow support
for larger devices.

BRK, Break. Anassembly
language instruction which can be
used to force an interrupt and
immediate suspension of execution
of a program.

buffer. An area of memory used to
temporarily hold data as it is being
transferred to or from a peripheral,
such as a disk drive.

carry flag. A 6502 processor flag
which indicates that a previous
addition resulted in a carry. Also

used as an error indicator by many
system programs.

catalog. A directory of the filesona
diskette. See directory.

chain. A linked list of data elements.
Data is chained if its elements need
not be contiguous in storage and
each element can be found from its
predecessor via an address or block
pointer.

checksum/CRC. A method for
verifying that data has not been
damaged. When data is written, the
sum of all its constituent bytes is
stored with it. If, when the data is
later read, its sum no longer
matches the checksum, it has been
damaged.

clobbered. Damaged or destroyed.
A clobbered sector is one which has
been overwritten such that it is
unrecoverable.

coldstart. A restartof a program
which reinitializes all of its
parameters, usually erasing any
work which was in progress at the
time of the restart.

contiguous. Physically next to. Two
bytes are contiguous if they are
adjoining each other in memory or
on the disk.

control block. A collection of data
which is used by the operating
system to manage resources.
Examples of control blocks used by
ProDOS are the Volume Control
Block (VCB) or a Volume Directory
Header.

control character. A special ASCII
code which is used to perform a
unique function on a peripheral, but
does not generate a printable
character. Carriage return, line
feed, form feed, and a bell are all
control characters.

controller card. A hardware circuit
board which is plugged into an
Apple connector which allows
communication with a peripheral
device, such as a disk or printer. A
controller card usually contains a
small driver program in ROM.

CSWL. A vector in zero page,
through which output data is passed

ﬂ

moMmMmMm MM oW oM
W o W W W oW oWw oW oW ww

o

n
W W

m pr o o™
(1 WY WV WV | VI §

o o
1y

oI
mw u w

i

Glossary G-3

for display on the CRT or for
printing.

cycle. The smallest unit of time
within the central processor of the
computer. Each machine language
instruction requires two or more
cycles to complete. One cycle on the
Apple is about one microsecond (one
millionth of a second).

data type. The type of information
stored in a byte. A byte might
contain a printable ASCII
character, binary numeric data, or a
machine language instruction.

decimal. A number system based
upon powers of 10. Digits range
from0to 9.

deferred commands. ProDOS
commands which may (or must) be
invoked from within an executing
BASIC program. OPEN,
APPEND, READ, WRITE, and
CLOSE are all examples of deferred
commands.

digital. Discrete values as opposed
to continuous (analog) values. Only
digital values may be stored in a
computer. Analog measurements
from the real world, suchasa
voltage or the level of light outside,
must be converted into a numerical
value which, of necessity, must be
“rounded off” to a discrete value.

direct access. Peripheral storage
allowing rapid access of any piece of
data, regardless of its placement on
the medium. Magnetic tape is
generally not considered direct
access, since the entire tape must be
read to locate the last byte. A
diskette is direct access, since the
arm may be rapidly moved to any
track and sector.

directory. A catalog of files stored
on a diskette. The directory must
contain each file’s name and its
location on the disk as well as other
information regarding the type of
data stored there. In ProDOS, a
directory is a file in itself and one
directory can describe other,
subdirectories.

-disk initialization. The process
which places track formatting

information, including sectors and
gaps, on a blank diskette. During
diskette initialization, the ProDOS
FILER also places a copy of the boot
loader in Block 0 and creates an
empty Volume Directory in Blocks 2
through 5. The Volume Bit Map is
also initialized in Block 6.

displacement. The distance from
the beginning of a block of data to a
particular byte or field.
Displacements are usually given
beginning with 0, for the first byte,
1 for the second, etc. Also known as
an offset.

DOS. Alsocalled DOS 8.2 and DOS
3.3. An earlier disk operating
system for the Apple, DOS was
designed to support BASIC
programming using the Disk I1
drive only. When hard disks became
available, Apple introduced
ProDOS.

driver. A program which provides
an input stream to another program
or an output device. A printer
driver accepts input from a user
program in the form of lines to be
printed, and sends them to the
printer.

dump. Anunformatted or partially
formatted listing of the contents of
memory or a diskette in
hexadecimal. Used for diagnostic
purposes.

encode. To translate data from one
form to another for any of a number
of reasons. In ProDOS, data is
encoded from 8-bit bytes to 6-bit
bytes for storage.

entry point (EPA). The entry point
address is the location within a
program where execution is to start.
This is not necessarily the same as
the load point (or lowest memory
address in the program).

EOF (End Of File). A 3-byte
number ranging from 0 to
16,777,216 (16 megabytes), which
represents the offset to the end of
the file. If the file is sequential
(contains no “holes”), the EOF is also
the length of the file in bytes.

G-4 Beneath Apple ProDOS

epilogue. The last three bytes ofa
field on a track. These unique bytes
are used to insure the integrity of
the data which precedes them.

Exclusive OR. A logical operation
which compares two bits to
determine if they are different. 1
EOR O resultsin 1.1 EOR 1 results
in0.

field. A group of contiguous bytes
forming a single piece of data, such
as a person’s name, his age, or his

file buffers.

social security number. In disk
formatting, a group of bytes
surrounded by gaps.

file. A named collection of dataon a

diskette or other mass storage
medium. Files can contain data or
programs.

In Apple ProDOS, a
pair of 512-byte buffers used by the
BASIC Interpreter to manage one
open file. Included are a buffer
containing the block image of the
current index block and one
containing the image of the current
data block. File buffers are
allocated by the BI as needed by
moving Applesoft’'s HIMEM pointer
down in memory.

file descriptive entry. A single

entry in a disk directory which
describes one file. Included are the
name of the file, its data type, its
length, its access restrictions, its
creation date, its location on the
diskette, etc.

file type. The type of data held by a
file. Valid ProDOS file types include
Binary (BIN), Applesoft (BAS),

oL L TR RAPIGE
DO WITH CO!dPUTERS?

Global Page.

Text (TXT), and System (SYS) files.
ProDOS supports up to 256
different file types.

firmware. A middle ground
between hardware and software.
Usually used to describe micro-code
or programs which have been stored
in read-only memory (ROM).

gap. The space between fields of
data on a diskette. Gaps on an Apple
diskette contain self-sync bytes.

garbage collection. The process of
combining many small embedded
free spaces into one large area. For
example, Applesoft performs
garbage collection on its string
storage to recover memory allocated
to strings which have been deleted.

A 256-byte area of
memory set aside by ProDOS to
contain system variables of general
interest. Two Global Pages are
currently defined: the System
Global Page at $BF00; and the BI
Global Page at $BE00. The)
structure of the Global Pages is
rigidly defined, allowing exte'zrnal
programs to communicate with
ProDOS without depending upon
release dependent locations. See also
vectors.

hard error. Anunrecoverable
Input/Output error. The data stored
in the disk sector can never be
successfully read again.

head. Theread/write headona
diskette drive. A magnetic pickup,
similar in nature to the head on a
stereo tapedeck, which rests on the
spinning surface of the diskette.

mm M m

mom

momomomo

= m
TR VAT

=

=

uwwwu“

i W A

1T

i

W G

n!

i

VUYL VT Y

'

Glossary G-5

hexadecimal/HEX. A numeric
system based on powers of 16. Valid
hex digits range from 0 to 9 and A to
F,where Ais10,Bis 11, ..., Fis 15.
Standard Apple practice is to
indicate a number as hexadecimal
by preceding it with a dollar sign.
$B30 is 11-256s plus 3-16s plus 0-1s,
or 2864 in decimal. Two
hexadecimal digits can be used to
represent the contents of one byte.
Hexadecimal is used with
computers because it easily converts
to binary.

high memory. Those memory
locations which have high address
values. SFFFF is the highest
memory location. Also called the
“top” of memory.

HIMEM. Applesoft’s zero page
address which identifies the first
byte past the available memory
which can be used to store BASIC
programs and their variables.

immediate command. A ProDOS
command which may be entered at
any time, especially when ProDOS
is waiting for a command from the
keyboard. The opposite of deferred
commands.

index. A displacementintoa table
or block of storage.

index block. A block containing a
table of block numbers describing
the order and location of the blocks
of data within a file. A sapling file
has one index block describing up to
256 data blocks. A tree file hasa
master index block which points to
other index blocks, which in turn
point to the data blocks in the file.

instruction. A single step to be
performed in an assembly language
or machine language program.
Instructions perform such
operations as addition, subtraction,
store, or load.

integer. A “whole” number with no
fraction associated with it, as
opposed to floating point.

intercept. A program which
logically places itself in the
execution path of another program,
or pair of programs. A video

interleave.

interpreter.

intercept is used to re-direct
program output from the screen to a
printer, for example.

The practice of selecting
the order of sectors on a diskette
track to minimize access time due to
rotational delay. Also called
“skewing” or interlacing.

A program which
translates user written commands
or program statements directly into
their intended function. Applesoft is
an interpreter. The ProDOS BASIC

Interpreter translates ProDOS
commands into functions such as
loading, saving, reading or writing
files. Another name for ProDOS
Interpreters is System Programs.

interrupt. A hardware signal which
causes the computer to halt
execution of a program and enter a
special handler routine. Interrupts
are used to service real-time clock
time-outs, BRK instructions, and
RESET.

I/0 (Input/Output) error. Anerror
which occurs during transmission of
data to or from a peripheral device,
such as a disk or cassette tape.

JMP. A 6502 assembly language
instruction which causes the com-
puter to begin executing
instructions at a different location
in memory. Similar to a GOTO
statement in BASIC.

JSR. A 6502 assembly langauge
instruction which causes the com-
puter to “call” a subroutine. Similar
to a GOSUB statement in BASIC.

K. A unitof measurement, usually
applied to bytes. 1 K bytes is
equivalent to 1024 bytes.

Kernel. That part of ProDOS which
provides the basic operating system
support functions. The Kernel
resides in the Language Card or
bank switched memory and consists
of the MLI, interrupt handler, and
diskette and calendar/clock device
drivers.

key block. The first block of a
ProDOS file.

KSWL. A vector in zero page
through which input data is passed

G-6 Beneath Apple ProDOS

from the keyboard or a remote
terminal.

label. A name associated witha
location in a program or in memory.
Labels are used in assembly
language much like statement
numbers are used in BASIC.

language card. An additional 16K
of RAM added to an Apple ITor
Apple II Plus using a card in slot 0.
The card gets its name from its
original use with the Apple UCSD
PASCAL system and for loading
other versions of BASIC. Apple Ile’s
have this additional memory built
in. See also bank switched memory.

latch. A component into which the
Input/Output hardware can store a
byte value, which will hold that
value until the central processor has
time to read it (or vice versa).

link. Anaddress or block pointer in
an element of a linked chain of data
or buffers.

list. A one dimensional sequential
array of data items.

load point (LP). The lowest address
of a loaded assembly language
program—the first byte loaded. Not
necessarily the same as the entry
point address (EPA).

locked. A fileis locked if it is
restricted from certain types of
access—usually one which is read
only. ProDOS provides control over
file access through the use of
directory entry bits.

logical. A form of arithmetic which
operates with binary “truth” or
“false”, 1or 0. AND, OR, NAND,
NOR, and Exclusive OR are all
logical operations.

LOMEM. Applesoft’s zero-page
address which identifies the first
byte of the available memory which
can be used to store BASIC
programs and their variables.

loop. A programming construction
in which a group of instructions or
statements are repeatedly executed.

low memory. The memory locations
with the lowest addresses. $0000 is
the lowest memory location. Also
called the “bottom” of memory.

LSB/Loorder. Least Significant
Bit or Least Significant Byte. The
1’s bit in a byte or the second pair of
hexadecimal digits forming an
address. In the address $8030, $30 is
the Lo order part of the address.

mark. A 3-byte “byte number” or
position within a ProDOS file. When
a file is being read by the MLI, a
current mark is maintained as well
as the EOF mark. See also EOF.

microsecond. A millionthofa
second. Equivalent to one cycle of
the Apple II central processor. Also
written as “usec”.

MLI (Machine Language
Interface). The MLI is part of the
ProDOS Kernel which resides in the
language card or bank switched
memory. The MLI performs such
functions as OPENing a file,
WRITING to a file, or
DESTORYing a file.

monitor. A machine language
program which always resides in
the computer and which is the first
to receive control when the machine
is powered up. The Apple monitor
resides in ROM and allows
examination and modification of
memory at a byte level.

MSB/Hiorder. Most Significant
Bit or Most Significant Byte. The
128’s bit of a byte (the left-most) or
the first pair of hexadecimal digits
in an address. In the byte value $83,
the MSBison (isa 1).

nibble/nybble. A portion of a byte,
usually 4 bits and represented by a
single hexadecimal digit. $FE
contains two nibbles, $F and $E.

null. Empty, having no length or
value. A null string is one which
contains no characters. The null
control character ($300) produces no
effect on a printer (also called an
idle).

object code. A machine language
program in binary form, ready to
execute. Object code is the output of
an assembler.

object module. A complete machine
language program in object code
form, stored as a file on a diskette.

mmam

m m

mmm B

fn

F

t
e ——— e e e ————— ———

™

4

_

n

T}

TR

"l "J i.)

¥ VY §

TTRY TTY

i

in

i

in

(LW T ST ST ST G

Glossary G-7

offset. The distance from the
beginning of a block of datatoa
particular byte or field. Offsets are
usually given beginning with 0, for
the first byte, 1 for the second, etc.
Also known as a displacement.

opcode, operation code. The three
letter mnemonic representing a
single assembly language
instruction. JMP is the opcode for
the jump instruction.

operating system. A machine
language program which manages
the memory and peripherals
automatically, simplifying the job of
the applications programmer.

OR. The logical operation
comparing two bits to determine if
either of them are 1. 1 OR 1 results
in 1(true), 1 OR O resultsin 1,0 OR
0 results in 0 (false).

overhead. The space required by
the system, either in memory or on
the disk, to manage either. The boot
blocks, Volume Directory, and
Volume Bit Map are partofa
diskette’s overhead.

page. 256 bytes of memory which
share a common high order address
byte. Zero page is the first 256 bytes
of memory ($0000 through $00FF).

parallel. A communication mode
which sends all of the bits in a byte
at once, each over a separate line or
wire. Opposite of serial.

parameter list. An area of storage
set aside for communication
between a calling program and a
subroutine. The parameter list
contains input and output variables
which will be used by the
subroutine.

parity. A scheme which allows
detection of errors in a single data
byte, similar to checksums but on a
bit level rather than a byte level. An
extra parity bit is attached to each
byte which is a sum of the bits in the
byte. Parity is used in expensive
memory to detect or correct single
bit failures, and when sending data
over communications lines to detect
noise errors.

parse. The process of interpreting
character string data, suchasa
command with keywords.

patch. A small change to the object
code of an assembly language
program. Also called a “zap”.

pathname. A string describing the
path ProDOS must follow to find a
file. A fully qualified pathname
consists of the volume name
followed by one or more directory
names followed by the name of the
file itself. If a partial pathname is
given, a default prefix is attached to
it to form a complete pathname. See
also prefix.

physical record. A collection of
data corresponding to the smallest
unit of storage on a peripheral
device. For disks, a physical record
is a sector.

pointer. The address or memory
location of a block of data or a single
data item. The address “points” to
the data. A pointer may also be a
block number, such as the pointer to
the Volume Bit Map in the Volume
Directory Header.

prefix. A system maintained default
character string which is
automatiecally attached to file names
entered by the user to form a
complete pathname. See also
pathname.

prologue. The three bytesat the
beginning of a disk field which
uniquely identify it from any other
data on the track.

PROM (Programmable Read Only
Memory). PROMs are usually
used on controller cards associated
with peripherals to hold the driver
program which interfaces the
device to applications programs.

prompt. Anoutputstring which lets
the user know that input is
expected. An “*” is the prompt
character for the Apple monitor.

pseudo-opcode. A special assembly
language opcode which does not
translate into a machine instruction.
A pseudo-opcode instructs the
assembler to perform some
function, such as skipping a page in

G-8 Beneath Apple ProDOS

an assembly listing or reseg‘ving
data space in the output object code.

RAM (Random Access
Memory). Computer memory
which will allow storage and
retrieval of values by address.

random access. Direct access. The
capability to rapidly access any
single piece of data on a storage
medium without having to
sequentially read all of its
predecessors.
recal. Recalibrate the disk armso
that the read/writehead is
positioned over track zero. Thisis
done by pulling the arm as far as it
will go to the outside of the diskette
until it hits a stop, producing a
“clacking” sound.
reference number (REF
NUM). Anarbitrary number
assigned to an open file by the MLI
to simplify identification in later
calls.
register. A named temporary
storage location in the central
processor itself. The 6502 has §
registers; the A, X, Y,S,and P
registers. Registers are used by an
assembly language program to
access memory and perform
arithmetic.
relocatable. The attribute of an
object module file which contains a
machine language program and the
information necessary to make it
run at any memory location.

return code. A numeric value
returned from a subroutine,
indicating the success or failure of
the operation attempted. A return
code of zero usually means there
were no errors. Any other value
indicates the nature of the error, as
defined by the design of the
subroutine.

ROM (Read Only
Memory). Memory which hasa
permanent value. The Apple
monitor and Applesoft BASIC are
stored in ROM.

sapling. A ProDOS file which
requires only one index block (2 to
256 data blocks). A sapling ranges

from 513 bytes to 131,072 bytes in
length. See also seedling and tree.

search. The process of scanning a
track for a given sector.

sector. The smallest updatable unit
of data on a disk track. One sector on
an Apple Disk IT contains 256 data
bytes.

sector address. A disk field which
identifies the following sector data
field in terms of its volume, track,
and sector number.

sector data. A disk field which
contains the actual sector data in
nibbilized form.

seedling. A ProDOS file which has
only a single data block (512 ‘bytes).
A seedling file does not require
index blocks. See also sapling and
tree.

seek. The process of moving the disk
arm to a given track.

self-sync. Also called “auto-sync”
bytes. Special disk bytes which
contain more than 8 bits, allowing
synchronization of the hardware to
byte boundaries when reading.

sequential acecess. A mode of data'
retrieval where each byte of data is
read in the order in which it was
written to the disk.

serial. A communication mode)
which sends data bits one at a time
over a single line or wire. As
opposed to parallel.

shift. A logical operation which
moves the bits of a byte either !eft or
right one position, moving a 0 into
the bit at the other end.

skewing. The process of
interleaving sectors. See interleave.

soft error. A recoverable I/O error.
A worn diskette might produce soft
errors occasionally.

SOS (Sophisticated Operating
System). The standard operating
system for the Apple III computer.

source code. A program in a form
which is understandable to humans;
in character form as opposed to
internal binary machine format.
Source assembly code must be
processed by an assembler to

|

mmMemmMmMme MmN e .

oMo momomomomommm M

oo

r’ -

I=)

e

FE,

wow o ow W W W W W W Wl

ial

TUT

T3

LE

g

'
|

(¥}

!

Glossary G-9

translate it into machine or “object”
code.

sparse file. A file with random
organization (see random access)
which contains areas which were
never initialized. A sparse file
might have an End Of File mark of
16 megabytes but only contain
several hundred bytes.

state machine. A process (in
software or hardware) which
defines a unique target state, given
an input state and certain
conditions. A state machine
approach is used in the ProDOS
BASIC Interpreter to keep track of
its video intercepts and by the
hardware on the disk controller
card to process disk data.

strobe. Theact of triggering an I/O
function by momentarily
referencing a special I/O address.
Strobing $C030 produces a click on
the speaker. Also called “toggling”.

subroutine. A program whose
function is required repeatedly
during execution, and therefore is
called by a main program in several
places.

system disk. A ProDOS volume
which contains the system files
necessary to allow ProDOS to be
booted into memory. Normally, the
PRODOS and BASIC.SYSTEM
files are necessary. A STARTUP
program may also be present.

system program. A ProDOS
program, written in machine
language, which acts as an
intermediary between the user and
the ProDOS Kernel.
BASIC.SYSTEM, FILER, and
CONVERT are all examples of
System Programs. See also
interpreter and BI.

table. A collection of data entries,
having similar format, residing in
memory. Each entry might contain
the name of a program and its
address, for example. A “lookup”
can be performed on such a table to
locate any given program by name.

toggle. The act of triggering an I/0
function by momentarily

referencing a special I/0 address.
Toggling $C030 produces a click on
the speaker. Also called “strobe”.

tokens. A method where human
recognizable words may be coded to
single binary byte values for
memory compression and faster
processing. BASIC statements are
tokenized, where hex codes are
assigned to words like IF, PRINT,
and END.

track. Onecomplete circular path of
magnetic storage on a diskette.
There are 35 concentric tracks on an
Apple diskette.

translate table. A table of single
byte codes which are to replace
input codes on a one-for-one basis. A
translate table is used to convert
from 6-bit codes to disk codes.

tree. A ProDOS file which requires
several index blocks (131,073 to
16,777,216 bytes of data). See also
index block, seedling, and sapling.

TTL (Transistor to Transistor
Logic). A standard for the
interconnection of integrated
circuits which also defines the
voltages which represent 0’s and 1’s.

unlocked. A file which allows all
types of access (READ, WRITE,
DELETE, RENAME, etc.). See
also locked.

utility. A program which is used to
maintain, or assist in the
development of, other programs or
disk files.

vector. A collection of pointers or
JMP instructions at a fixed location
in memory which allows access to a
relocatable program or data.

volume. An identification for a
diskette, disk platter, or cassette,
containing one or more files.

Volume Directory. The first
directory on a disk volume. Also
called the “root” directory. All other
directories must be reached by first
reading the Volume Directory.

warmstart. A restart of a program
which retains, as much as is
possible, the work which was in
progress at the time.

G-10 Beneath Apple ProDOS

ZAP. From the IBM mainframe
utility program, SUPERZAP. A
program which allows updates to a
disk at a byte level, using
hexadecimal.

zero page.
. memory in a 6502 based machine.

The first 256 bytes of

Zero page locations have special
significance to the central
processor, making their
management and assignment
critical.

L)

m Mom
e e e = —— e — S P B I N B S B SREE § BN A

m

o

Mmoo

Mmoo

e

|

’!"

AT

=,

b

or

1

o W W ow

' '’

(1 VY VRN VANV VRN VY VIR VR VY

N Y

T UBET VBT BT T UMt

\

/RAM (random access memory)
devicedriver 7-2,7-7,7-8
drive 5-3,5-9,6-6,7-1,7-7,7-9,7-
10, 7-12
volume 7-7,7-10
80-column card 2-2, 2-4,7-12, 7-27, 8-
7, A-36, A-37
80-column soft switches 7-12
access bits 4-9, 4-12, 4-30, chap. 6
address field 3-8,3-11, 3-13, 3-14, A-
4, A-5,C-1,C-2,C-7
advantages of ProDOS 2-5
alternate 64K memory 5-9, 7-7
arm (see disk)
AppleIl 5-9,7-12
AppleIIPlus 5-1,5-9,6-63,7-12
AppleIlec 5-9,6-6,7-7,D
AppleIle 5-1, 5-9, 6-6
reference manual
ROM A-36
Thunderclock 2-2, 5-5, 7-14, 7-27
Apple III 5-9,6-12,6-63, E-1
Applesoft 5-2,5-7,5-11, 6-31, 6-35, 7-
5, (see also file types)
& 5-7
BASIC 5-1,54
enhancement aid programs 2-8
file 2-7, (see also file types)
motherboard ROM 5-3
variables, saving and restoring 2-2
AppleWorks 6-24, 6-30, 6-34, E-4
automated programs B-4,B-5
autostart 5-7
auxiliary data buffer C-3,C-5

-1
T-7
A-26

INDEX

auxiliary memory 7-1,7-2,7-3, 7-7,
7-8
available RAM 5-3
bank switched memory 2-8, 5-1, 5-4,
5-9, 6-7, 6-18, 6-19, 7-27, 8-8
BAS 4-12,A-26
BASIC 1-2,2-2,2-5,2-6,2-7, 2-8, 4-
14, 4-19, 4-20, 4-23, 4-24, 4-31, 5-4,
5-6,5-9, 5-11,7-4, 7-19, A-2, A-22,
A-26, E-1, E-2, (see also file types)
BASIC interpreter intercepts 2-7, 2-8,
5-1, 5-2, 5-8, 5-4, 5-8, 6-2, 7-2, 7-4,
7-5,7-14, 7-18, 7-24, 7-27, A-30
BASIC.SYSTEM 5-10, 5-11, 7-10, 7-
19, 7-21, 7-22, 1-24
BI 5-6,5-7,5-10,5-11, 5-12,6-1, 6-31,
6-61, 6-64, chap. 7, 8-2, A-2, A-30,
A-31
buffer allocation subroutine 7-4,
7-14
command scanner 5-7
Global Page chap.5, 6-62, 6-65, 7-
4,7-6,7-21, A-30
loader 5-9,5-10,5-11
relocator 5-10, 5-11
syntax scanner 7-6
bit assignment 6-10, 6-11
BIN files (see files)
bitmap 5-2, 5-6, 6-27, 6-60, 6-62, 6-
64,7-11,7-12
bitcells 3-4, 3-5,3-9
bit-slip marks 3-14
blocks 3-1, 3-3, 3-15, 3-18, 3-19, chap.
4,5-5,5-9, 5-10, 7-10, 7-19, 7-25, 7-
26, A-2

-2 Beneath Apple ProDOS

block access 3-20, 6-1, 6-6
block number 3-16, 3-19, 6-7, 6-8, 6-
9, 6-10, 6-11, 6-18, 6-19, 6-20, A-25,
A-26
boot (see disk)
boot image 4-6
boot loader E-3
Boot ROM 5-8,5-9, 5-11
bootstrap loader 4-3,4-31, 5-8, 7-19
breaking protected software B-1
BRK 5-7
BSAVE command (see commands)
buffer 3-3,7-2,7-4,7-5,7-7,7-10, 7-
11,7-14
circular 7-16, A-36
pointer 6-7
BUGBYTER T7-27
CHAINing E-2
checksum 3-8, 3-13, 3-14, 4-31, 4-32,
C-12
clock 5-3, 7-13., 7-20
clock/calendar 5-5, 6-13, 6-21
clock driver 7-2
coldstart 5-11
command handlers 7-5,7-6, 7-7, 8-3,
A-2,A-30,A-31
computational overhead time 4-33
controller card 4-31, 5-8, 5-9, 6-59, 7-
25,D-2
CONVERT 7-10
copy programs B-5
CP/M 3-1
creation, date and time of 4-8, 4-28,
chap. 6
CSWL/H 5-11,6-65
customizing ProDOS 2-2, chap. 7
data
blocks 4-11,4-14, 4-15, 4-16, 4-18,
4-19, 4-22
field 3-8,3-11,3-12, 3-13, 3-14, A4,
A-5
register 3-6, 3-7, 3-10, 6-2, 6-3, 6-5,
D-2, D-3. D-4, D-5, D-6, D-8, D-9
date/time routine 6-13, 8-5
date/time of creation chap. 6
date/time of last modification chap.
6
DEALLOC INTERRUPT 7-15
decoding 3-8,3-11, 3-12
device
connect 6-8, 6-9, 6-10, 6-11, 6-19, 6-
20, 6-59, 6-62, A-23
drivers 2-4,3-3, 3-16, 3-18, 3-19, 5-
5, 6-6, 6-7, 6-18, 6-59, 7-3, 7-7, 7-10,
7-20, 7-25, 7-27, 8-6, C-1, C-5, E-3

handler 6-18,6-19
independent 2-1,2-4,3-1,5-5
number 7-8, A-5
signature 7-13,7-14
specific code 3-1
status 3-1
device driver parameters 6-8, 6-9,
direct access 6-1,6-2
direct block I/O A-2
direct READ 6-45, 6-46, 6-48
direct WRITE 6-48
directory 2-4,2-8, chap. 4, 5-9, 6-13,
A-2
blocks 4-6
damage A-19
entry 2-7,2-9,4-4, 4-12, 4-15, 4-17,
4-19, 4-20, 4-23, 6-22, 6-50, A-25,
A-26, A-27
file 6-54, 7-23
full 6-62
header 6-22
disk
access 2-3,4-34
arm 6-4
backup 4-31,4-32
boot &-7,5-8, 5-12, 7-10, 7-11, 7-12,
7-19.7-21,7-22
controller card 4-3,5-9, 6-1, D-1
damaged 4-30, 4-31, 4-32, A-9,
A-27
device T7-14
drive 2-5, 5-5,5-6, 7-7, 7-20
format 4-10, 4-30, 4-31, 4-32, 4-34,
7-8,7-14, 7-25, A-1, A-26
full 6-25, 6-49, 6-62
hard disk 4-3, 4-5, 4-26, 5-8, 5-9, 6-
6,7-14
head 4-33
protection schemes B-1, B-6, (see
also protection schemes)
repair A-1,A-9
swapping 2-8
diskette organization 3-3
DOS 2-1,4-33,7-18, E-1
3.3 2-1
deficienciesof 2-1
File Manager E-2
standardization 2-2
DUMBTERM (see utility programs)
DUMP (see utility programs)
EDASM 7-10,7-27
emergency repairs 4-30
emulation mode 5-9

—

L
W Wwuwwweswwwauuwin

o o

=
PN

Li\

L;"

=)

IF)

s,

L—-\

FE

14

W) W W e

-1

ey

Index |3

encoding C-5
4and4 C-1,C-2
5and3 C-2
6and2 C-2,C-3
ofdata C-1
epilogue 3-8, 3-13, 3-14
error
codes 6-59, 8-2, 8-4, A-20
handling 8-2, A-9
I/0 4-30, 4-31, 4-32, chap. 6, 7-25,
A-4,A-5, A-20,A-23, A-25, A-26,
E-1
message 7-22
number 8-2
soft 4-31
example programs (see utility
programs, customizing ProDOS)
exclusive-ORing C-7,C-9,C-12
EXERCISER 7-27
extended 80-column card 2-5, 5-5,
7-7
external command 7-6
EXTERNCMD 7-6,7-7, 8-2, A-30,
A-31
FCB (see File Control Block)
FIB (see utility programs)
file
Applesoft 2-7
attributes 6-13
BAS 4-23,4-24
BIN 2-6,4-12, 4-20, 4-22, A-26, E-4
buffers 2-8, 5-3, 5-4, 5-6, (see also
Machine Language Interface
function codes)
control block 6-41, 6-49, 6-59
count 4-9,4-12
creating 7-23, 7-24, 7-27
descriptive entries 4-6, 4-10, 4-14,
4-32
directory 6-60
DIR 4-26,7-23
EXEC 5-6,8-3
HELLO E-2
1/O buffers 7-4
locked 4-12
management interfaces 2-7
management system 2-4,2-5
opening of 2-8,5-4
pathname 2-8, 4-28
random access text 2-6,4-21
saplings 4-10, 4-11, 4-13, 4-15, 4-
17, 4-19, 4-32, 6-36, 6-60
seedling 2-9,4-10,4-11, 4-13, 4-14,
4-15, 4-19, 4-32, 6-25, 6-36, 6-60,
A-26

sparse files 4-19, 4-21, 6-54, 6-56,
E-2

STARTUP 5-12,E-2
structures 2-2,4-13, 4-15, 4-17,
4-19
tree 4-10,4-11,4-13, 4-17, 4-19, 4-
32,6-36, A-26
FILER 6-6,7-10,7-25, 7-26
file types 2-7,4-10, 4-19, 4-24, 6-60,
7-10
flags 5-6
FORMAT (see utility programs)
format alterations B-2
fragmentation 4-33,4-34
free blocks 4-3, 4-5, 4-32
FREEBUFR 7-5
free subroutines 5-7
front door method B-7, B-8
function code (see Machine
Language Interface function
code)
gaps 3-8, 3-11, 8-13, 3-15, 3-19
garbage collection 2-6, 2-8, 5-4, 8-3
general purpose buffer 5-3, 5-4, 5-11,
7-4,7-9,7-10
generic signature 7-13
GETBUFR 7-4
GETLN 7-3
input line buffer 7-2
Global Pages (see BI Global Page or
System Global Page)
Group Code Recording D-1
half tracks 3-2, B-4
harddisk 2-1, 4-1, 4-26
hardware
board B-7, B-8
card B-2
header entry 4-6, 4-26
HELLO (see files)
hiding the code B-7
HIMEM 2-8,4-25,5-2, 5-8, 5-4, 5-7,
7-4, A-31, E-2
HIRES
double graphics 7-7
primary buffer 7-7
secondary buffer 7-7
IN# 56,7-14
index blocks 2-9, 4-15, 4-16, 4-17, 4-
18, 4-32,4-33, 6-36, 6-47, 6-54, A-
2, A-25, A-26, A-27
index holes 3-3
input vector 8-2
integer BASIC 2-7,5-4, E-2
Integrated Woz/Wendell
Machine D-1

I-4 Beneath Apple ProDOS

]

intercept 8-2,8-3
interfacecard 5-5
interleaving 3-15, 3-
inter-block 3-16, 3-
intra-block 3-16, 3-1
interpreter 5-10, 7-10,
interrupt 2-2, 2-4, 5-5,
7-14,7-15, 7-16,7-
35, A-37, A-36, B-6
handler 6-13,6-15, 6-16, 6-59, 6-61,
7-11,7-15, 7-19, 8-6, E-3
IRQ maskable 5-7,6-15
routine 7-16,7-17,8-8
vector table 6-69, 7-15
1/0 buffer 6-8,6-45,6-61, A-31
I/O error (seeerror)
1/0 select address A-1
IRQ handler 8-6
joystick 7-13
KBAKVER 7-11

16, 3-18

11,7-12
6, 6-18, 6-19,
7,87, A-2, A-

18
18
7-
5-
1

’

6-
8-

Kernel 2-5,2-7,2-8,4-31,5-1,5-2, 5
3,5-4, 5-5, 5-8, 5-9, 5-10, 5-11, 6-12,
6-18, 6-20, 7-3,7-7, 7-10,7-11, 7-
15, 7-17,7-18,7-19, 7-27,8-8, E-3

key block 4-4,4-6,4-7,4-11,4-12,
A-23

keyword 5-6,7-6,8-4, E-2
KSWI/H 5-11,6-65
KVERSION 7-11
language card 2-8, 5-1,5-3, 5-4, 5- 6,
5-9, 6-17, 6-18,6-19,7-1,7-12, 7-
27, 8-8
LEVEL 6-43, 6-49 to 6-51, 6-
logic state sequencer D-1, D-
MACHID 7-7,7-12,7-27
machineID 5-6
Machine Language Interface 3-18, 4~
31, 5-3, 5-4, 5-5, 5-6, 5-7, chap. 6, 7-
2,7-10,7-12, 7-16, 7-17, 7-23, 7-24,
8-4,8-5,87. A-2, A-31, A-36, A-
37, E-2,E-3
buffers 7-11
function codes 6-12 to 6-16, 6-59
Macintosh 2-4, D-1
manuals
BASIC Programmming With
ProDOS 1-1, 1-2, 6-1
Beneath Apple DOS 12,81
ProDOS User’s Manual 1-1,1-2
ProDOS Technical Reference Man-
wal (for the Apple I family) 1-2
Understanding the Apple I1 - 3-4,
D-8
MAP (see utility programs)
master index block 4-11,4-17, 4-18,
4-22, A-26

59
2,D-8

memory
bitmap 2-5,5-2,5-6,5-11,7-11, 8-6
page boundaries 6-6
MLI (see Machine Language
Interface)
modem 7-13
monitor 5-7,7-19, A-3, A-37
ROM 5-9,7-27
most significant bit (MSB) 6-45, D-8
motherboard ROM 2-7, 7-15, 7-23
motor 6-4
MSB (see Most Significant Bit)
multiple buffering (see ProDOS)

network 7-13
nibble C-1
copiers B-2, B-5, B-7
copy programs A-9, B-6
counting B-5
non-maskable interrupt 5-7
online devices list 7-8
openfile E-2,E-3
output vector 8-2
overhead 2-1,4-2,4-33
padding 4-20
parallel card 7-13
parameter 8-4,8-5, B-6, B-7
count chap.6
list chap.6
PASCAL 2-2,2-3,E4
patching 7-19, 7-20, 7-21, 7-25, 7-26,
A-2, A-27
pathname 2-8, 4-26, 4-27, 4- 28, 4-34,
chap. 6, 7-5,7-7,7-12, 8-4
PBITS 7-6,7-7
peripheral
calendar/clock 2-4
card 5-9,7-13,7-15
drivers 7-13
phases 3-2,6-2, 6-4
physical interleaving 3-15, 3- 16
physical sectors 5-9
power-up byte 5-7,7-11

PR# 5-6,7-14

prefix 2-8,4-28,7-7, 7-12
prenibble A-1,C-5
ProDOS

advantages 2-5

commands 5-1,5-4

devicedriver 6-1

disadvantages 2-7

filename E-1

loader 5-9,5-10, 7-7

multiple buffering 2-3

Program Logic Supplement 5-12,
8-1

mMmmm™mmMm

m m

e
ll!

TR O AP A i)
() TV

(e

T x

WwWwowwwwwwwwu

W W W W

1 VRN |

f

1

\\

T\

Index 1I-5

relocator 5-9, 5-10, 7-7
system files 4-3, 5-10
version 4-8, 5-5, 5-6, 7-11, 7-19, 7-
21,7-24
ProFile 4-1,4-5,6-6,7-14
prologue 3-13,3-14
prompt character 5-11
protection A-4, appendix B
quarter tracks B-4
QUIT code 2-8, 5-4,6-23,7-1, 7-3, 7-
12, 7-20
quit vector 5-5
/RAM (see top of index)
read 6-8,6-43
block 6-7
pulse D-6, D-8, D-9
recalibrates 5-9
register (see data register)
rename 4-9,4-12, 4-30, A-27
record length 2-6, 4-14, 4-15, 4-20,
6-24
reference number chap. 6

relocatable object module 6-24, 6-31,

6-35

repairing diskettes (see emergency
repairs)

RESETkey 4-31,4-32,7-11,7-12

reset protection B-6

RESET vector 6-64,7-11

RESTORE 4-24, (see also file types)

return code chap. 6, A-20

ROM 5-4,5-8,6-6, D-1, D-2, D-5, D-6

map 8-7

rotation delay 4-33, 4-34

RUN command (see smart RUN
command)

run-time environment 2-7

RWTS E-2

sapling (see file)

savearea 8-3,8-7

sectors, allocation of 4-1

seedling (see file)

seek delay 4-33,4-44

selectdrive 6-2

self-syne bytes 3-7, 3-8, 3-9, 3-10, 3-
11, 3-12

sequential blocks 3-16

sequential form 4-19

serial 7-13

serial interface card A-2, A-35

signature (see protection)

skewing 4-1,4-33,4-34

slot 5-5, 5-6, 5-9, chap. 6, 7-7

smart RUN command 2-5, 7-10, 7-22

soft sectoring 3-3

software interleaving 3-16

SOS 1-3,2-4,4-1,4-11,4-24, 6-12,
E-1
sparse (see file)
special sync bytes B-6
speech device 7-13
spiral tracks B-4
STARTUPfile 7-22
state machine D-2, D-3, D-5,D-8
STATUS 6-6,6-7,6-8
status register A-36
stepper phase 6-4
storage type 4-8, 4-10, 4-15, 4-28,
4-33
strings 5-4, 8-3
subdirectory 4-4, 4-7, 4-9, 4-10, 4-11,
4-12, 4-26, 4-27, 4-28, 4-29, 4-30,
6-24
header 4-10, 4-28, 4-29, 4-30
name 4-28
subindex block 4-17, 4-19, 4-22
supplement 1-3, 8-2, 8-8, 8-9
switches 6-2,6-3
synchronized tracks B-5
SYS 4-12,7-10,7-11,7-19, 7-27
system
bitmap (see bit map)
calls 2-2,2-4,7-1
death handler 8-5, 8-8
error handler 8-5
Global Page 2-4,2-5,5-2,5-3, 5-5,

6-15, 6-17, 6-21, 6-43, 6-50, 6-51, 6-
57,6-61,6-63,7-2, 7-7,7-8, 7-11, 7-
12, 7-15, 7-16, 7-20, 8-1, 8-2, 8-5,
A-37,E-3

program 5-4,7-10, A-87, 6-24, 6-31
vector area 7-2
terminal emulator A-2, A-35
text files 2-6, 6-24, 6-30, 6-31, 6-34, 6-
35, E-4
tree (see files)
Thunderclock (see Apple Ile)
TRACE 2-8,83
track formats 3-3
translate C-8
two way mapping C-9
TXT 4-12,4-19, 4-20, 4-31, A-26
TYPE (see utility programs)
Understanding the Apple I 3-4, D-8
Understanding the Apple Ile 6-8
unit number 6-7, 6-8, 6-9, 6-10, 6-11,
6-13, 6-18, 6-19, 6-20
user data page C-5
user written
commands 2-4
programs 5-2
utilities 2-2, 2-4, 2-5, 4-24, 4-32, 4-33

A-2, A-22, A-23, A-27
Control Block 6-38,6-41,6-61

zeropage 5-11,7-1,7-3,7-15

AW wil Wl W W W W W W W e i

1

rm o
—-F;
1
16 Beneath Apple ProDOS E
o
utility programs directory chap. 4, 6-25, 6-26, 6-28,] N
DUMBTERM A-2, A-35, A-36, A- 6-29, 6-36, 6-43, 7-11, 7-27, A-22, 3 ~01e_s
37 A-23, A-26 -
DUMP A-1,A4,A-5 A-31 directory header 4-8,4-9, —
FIB A-2, A-4, A-25, A-26, A-27 4-10,4-13, "
FORMAT 6-6,6-7,6-8, A-2, A-9 name 4-8,6-37, A-23
MAP A-2,A-22 number E-2 n
TYPE A-2,A-30,A-31 space allocation 4-5 -
ZAP A-2, A-19,A-20, A-25, A-26 VPATH1 76)
VAR 4-12,4-25 warmstart vector 8-2 m
variables write 6-8 =
ondisk 2-5 block 6-7 _
VCB (see Volume Control Block) head 4-34 r
vector 5-5,5-7,5-12 protect 6-3, 6-5, 6-8, 6-9, 6-11, 6-20,
I/O 5-6 6-25, 6-26, 6-28, 6-49 to 6-51, 6-59, o
version number 5-9 6-62, D-5, D-6 - -
volume 2-4,2-4,2-8,3-13,4-1,4-2,4- XCNUM 17-6,7-7
3, 4-6, 4-8, 4-13, 4-26, 4-28, 4-32, 4- XLEN 17-6,7-7 T
33,4-34,5-9,7-1,7-7,7-8, 7-10, XTERNADDR 7-6,7-7 -
7-14, 7-19 ZAP 4-32,4-33, 7-19, (see also utility -
bit map 4-3, 4-4, 4-5, 4-9, 4-32, 4-33, programs) n

Beneath
APDIe
ProDOS

REFERENCE
CARD

Second Printing, March 1985

11111111111111

DIRECT USE OF THE DISKETTE DRIVE

e e e e e e e e e e e e e

p:
3

ProDOS Hardware Addresses
CNALDY QIVTMOANITLYQ GANARTY OTETY I,
ULr OWwWillUuIrino UIN dWwWll
MDAQI ™WAQTY
DAJDL DAJSI
ADDRESS|FUNCTION | ADDRESS|FU
$COR0 Phage 0 off $C081 Ph
$C082 Phase 1 off $C083 Phase 1 on
$C084 Phase 2 off $C085 Phase 2 on
$C086 Phase 3 off $C087 Phase 3on
$CO88 Drive off $C089 Drive on
CONQ A Qalant Ariva 1 EMONQD Qalan
PUUON oCiECLArive 1 jpuvon el
$COKC Shift data $CO8D Load da
register register
$CO8E Read $CO8F Write
Four Way Q6/Q7 Switches
e 107 | RIINCOTINN
LAt A K ULINuU 1 3ULY
Oee | OFe G‘nnl\l woand camitanain
il il phy e aUlC Icau ccqucu\.lug
Off | On | Shift data register every four cycles
while writing.
On | Off | Check write protect and initialize
sequencer for writing.
N IO by oy a0 ey
un uun 104U Uadld regisier every 1our Cycies
while writing
ile writing.
Address Ranges For Siofs
SLOT ADDRESS

NUMBER RANGE
$C080—$CO8F

$C()90—$(J091‘

$COA0—$COAF
$COB0—$COBF
$CO0CO—$COCF
$COD0—$CODF
$COE0—$COEF

EINATYA QAT

LUK U—dLUL I

ST WO

ProDOS Block Conversion Table for Diskettes

PHYSICAL
SECTOR — 0&2 1&6 8&A C&E 1&3 5&7 9&B D&F
TRACK 0 000 001 002 003 004 005 006 007
TRACK 1 008 009 00A 00B 00C 00D 00E 00F
TRACK 2 010 011 012 013 014 015 016 017
TRACK 3 018 019 01A 01B 01C 01D 01E 01F
TRACK 4 020 021 022 023 024 025 026 027
TRACK 5 028 029 02A 02B 02C 02D 02E 02F
TRACK 6 030 031 032 033 034 035 036 037
TRACK 7 038 039 03A 03B 03C 03D 03E 03F
TRACK 8 040 041 042 043 044 045 046 047
TRACK 9 048 049 04A 04B 04C 04D 04E 04F
TRACK A 050 051 052 053 054 055 056 057
TRACK B 058 059 05A 05B 05C 05D 05E 05F
TRACK C 060 061 062 063 064 065 066 067
TRACK D 068 069 06A 06B 06C 06D 06E 06F
TRACK E 070 071 072 073 074 075 076 077
TRACK F 078 079 07A 07B 07C 07D 07E O7F
TRACK 10 080 081 082 083 084 085 086 087
TRACK 11 088 089 08A 08B 08C 08D 08E 08F
TRACK 12 090 091 092 093 094 095 096 097
TRACK 13 098 099 09A 09B 09C 09D 09E 09F
TRACK 14 0A0 0A1 0A2 0A3 0A4 0A5 0A6 0A7
TRACK 15 0A8 0A9 0AA 0AB 0AC 0AD 0AE 0AF
TRACK 16 0B0 0B1 0B2 0B3 0B4 0B5 0B6 0B7
TRACK 17 0B8 0B9 0BA 0BB 0BC 0BD 0BE OBF
TRACK 18 0C0O 0C1 0C2 0C3 0C4 0C5 0C6 0C7
TRACK 19 0C8 0C9 0CA 0CB 0CC 0CD 0CE OCF
TRACK 1A 0D0 0D1 0D2 0D3 0D4 0D5 0D6 0D7
TRACK 1B 0D8 0D9 0DA 0DB 0DC 0DD O0DE ODF
TRACK 1C 0E0 0E1 0E2 0E3 0E4 0E5 0E6 0E7
TRACK 1D 0E8 0E9 0EA 0EB 0EC O0ED OEE OEF
TRACK 1E 0F0 0F1 0F2 0F3 0F4 OF5 0F6 0F7
TRACK IF OF8 0F9 OFA OFB 0FC OFD OFE OFF
TRACK 20 100 101 102 103 104 105 106 107
TRACK 21 108 109 10A 10B 10C 10D 10E 10F
TRACK 22 110 111 112 113 114 115 116 117
Also See Page 3-17
DIRECTORY HEADERS
+904 | STORAGE_TYPE +0/1: Previous block
NAME_LENGTH +2/3: Next block
DIRECTORY
+805 NAME 1 (15BYTES) , {
+*$14 | RESERVED (8 BYTES) }
L
+$1C CREATION STORAGE
1 TYPE: $F1 = Vol Dir
+§1E CREATION $EI = subdir
TIME Where | = length
of volume name
*$20 | VERSION
DATE: YYYYYYYM MMMDDDDD
MIN .
+$21 VERSION TIME: 000HHHHH 0OMMMMMM
ACCESS
+$22 ACCESS BITS: DNBOOOWR
D = Destroy W = Write
+$23 L%':JTG%'YH N=Rename R= Read
B = Backup
ENTRIES
*$24 | peRBLOCK
+$25 FILE .
CO!JNT SAME AS Vol Dir
+§27 BIT MAP PARENT
POINTER POINTER
1
+$29 TOTAL PARENT PARENT
BLOCKS ENT NUM ENT LEN
i — — ——
Vol Dir Sub Dir

panel 2 Also See Pages 4-8 to 4-9

FILE DESCRIPTIVE ENTRY

STORAGE_TYPE STORAGE $11 =Seedling
+$00 | NAME_LENGTH TYPE: $21 =Sapling
$31 =Tree
+$01 N (15 BYTES) 2 $DI =Dir
1 Where | = length
+$10 FILE of volume name
TYPE FILE $04 =TXT
TYPE: $06 =BIN
KEY BLOCK POINTER $OF =DIR
—i- $FC=BAS
BLOCKS IN USE $FD = VAR
Y $FF =SYS
EOF MARK
-y
CREATE DATE
X DATE: YYYYYYYM MMMDDDDD
CREATE TIME TIME: 000HHHHH OOMMMMMM
ACCESS
BITS: DNBGOOOWR
VERSION D =Destroy W =Write
N N=Rename R =Read
VERSION B = Backup
AUX TXT = Record Len
BAS » Load Address
VAR
AUX‘TYPE SYS = Default Parms
($2000)
MODIFY DATE
1
MODIFY TIME
DIR HEAD POINTER
Also See Pages 4-10 to 4-13
VOLUME BIT MAP
| 1234567 89 ... —)

t_if bitis 1, Block 0 is free
0, Block O is in use
Volume Bit Map for a Disk II diskette is in Block 6 and is 35 bytes in length.

panel 3 Also See Page 4-5

SYSTEM GLOBAL PAGE FORMAT

ADDR CONTENTS ADDR CONTENTS
BF00 JMP to MLI BF7A-7B Openfile 6
BF03 JMP to $BFF6 BF7C-7D Open file 7
BF06 JMP to Date/Time Address BF7E-7F Openfile 8
(or RTS if no clock) BF80-87 Interrupt address table
BF09 JMP to System Error BF80-81 Priority 1
BFOC JMP to System Death BF82-83 Priority 2
BFOF System Error number BF84-85 Priority 3
BF10-2F Device Driver address table BF86-87 Priority 4
BF10-11 Slot O reserved BF88 A register savearea
BF12-13 Slot 1, Drive 1 BF89 X register savearea
BF14-15 Slot 2, Drive 1 BF8A Y register savearea
BF16-17 Slot 3, Drive 1 BF8B Sregister savearea
BF18-19 Slot 4, Drive 1 BF8C Pregister savearea
BF1A-1B Slot 5, Drive 1 BF8D Bank ID byte (ROM/RAM)
BF1C-1D Slot 6, Drive 1 BF8E-8F Interrupt return address
BF1E-1F Slot 7, Drive 1 BF90-91 Date
BF20-21 Slot 0 reserved BF92-93 Time
BF22-23 Slot 1, Drive 2 BF94 Current File Level
BF24-25 Slot2, Drive 2 BF35 Backup Bit
BF26-27 /RAM BF96-97 Currently Unused
BF28-29 Slot 4, Drive 2 BF98 Machine 1D byte
BF2A-2B Slot 5, Drive 2 BF99 Slot ROM bit map
BF2C-2D Slot 6, Drive 2 BF9A Prefix Flag (0 = no Prefix)
BF2E-2F Slot7, Drive 2 BF9B MLI active Flag
BF30 Slot/Drive last device BF9C-9D Last MLIcall return
BF31 Count (-1) active devices address
BF32-3F Listof active devices (ID) | BFOE MLIXregister savearea
BF40-4F Copyright Notice BF9F MLIY register savearea
BF50-55 Bank in RAM call IRQ ($FFD8)| BFAO-CF rL:St?hggrd entry/exit
BF56-57 Temporary storage ($FF9B
BF58-6F Bitm‘;p |o)v/« 48K 02 m(ﬁm(?ry) BFDO-F3 Interrupt entry/exit
BF70-7F Open File buffer address routines
table BFF4 Storage for byte at $SE000
BF70-71 Open file 1 BFF5 Storage for byte at $D000
BF74-75 Open file 3 BFFC Interpreter minimum
BF76-77 Open file 4 Version .
BF78-79 Open file 5 BFFD Interpreter Version
number
BFFE Kernel minimum version
BFFF Kernel version number
MACHINE IDENTIFICATION BYTE ($BF98)
00.. 0...11I ..00 unused
01.. 0... I+ .01 48K
10.. 0... Ile .10 ... 64K
11.. 0... III emulation 11 000 128K
00.. 1. .. Future expansionX.. Reserved
01.. 1. .. Future expansion ..0. no 80-column card
10.. 1... IIc .. 1. 80-column card
11.. 1. .. Future expansion ... 0 no compatible clock

panel 4

Also See Pages 8-5 to 8-8

... 1 compatible clock

Bl GLOBAL PAGE FORMAT

ADDR CONTENTS ADDR CONTENTS
BE0O JMP to WARMDOS BE53 Number of command
BEO3 JMP to command parse BE54-55 PBITS (permitted)
BE06 JMP to user parser BE56-57 FBITS (found)
BEOS JMP to error handler BE58-59 A keyword value
BEOC JMP to error printer BESA-5C B keyword value
BEOF Error code number BESD-5E E keyword value
BE10-1F OQutput vectors BESF-60 L keyword value
BE20-2F Input vectors BE61 S keyword value
BE30-31 Current output vec BE62 D keyword value
BE32-33 Current input vec BE63-64 F keyword value
BE34-35 OQutputintercept addr BE65-66 R keyword value
BE36-37 Inputintercept addr BE67 V keyword value
BE38-3B STATEintercepts BE68-69 @ keyword value
BE3C Default stot BEGA T keyword value
BE3D Default drive BE6B PR#/IN# slot value
BE3E-40 A,X)Y savearea BE6C-6D Pathname 1 addr
BE41 TRACE active flag BEGE-6F Pathname 2 addr
BE42 STATE (0=immediate) BE70 GOSYSTEM MLI interf.
BE43 EXEC active flag BE85 Last MLI call number
BE44 READ active flag BE86-87 LastMLI parmlist addr
BE45 WRITE active flag BEAO CREATE parmlist
BE46 PREFIX active flag BEAC GET_PREFIX parmlist
BE47 DIR file READ flag BEAF RENAME parmlist
BE48 not used BEB4 GET_FILE_INFO parmlist
BE49 STRINGS space count BEC6 ONLINE parmlist
BE4A Buffered write count BECB OPEN parmlist
BE4B Command line length BED1 SET_NEWLINE parmlist
BE4C Previous character BED5 READ parmlist
BE4D Open file count BEDD CLOSE parmlist
BE4E EXEC file closing flag BEDF reserved
BE4F CATALOG line state BEF5 JMP to GETBUFR
BES0-51 External cmd handler BEF8 JMP to FREEBUFR
BE52 Command name length BEFB Original HIMEM MSB
COMMAND NUMBERS:
00= external 07= EXEC OE= BSAVE 15= APPEND 1C=CATALOG
01= IN# 08= LOAD OF= CHAIN 16= CREATE 1D=RESTORE
02= PR# 09= SAVE 10= CLOSE 17= DELETE 1E=POSITION
03= CAT 0A= OPEN 11= FLUSH 18= PREFIX
04= FRE 0B=READ 12= NOMON 19= RENAME

05= RUN 0C=SAVE 13= STORE 1A=UNLOCK
06= BRUN 0D=BLOAD 14= WRITE 1B=VERIFY

PBITS/FBITS BIT ASSIGNMENTS:

$8000 Prefix needed $0080 AD keyword ok
$4000 Slot number only $0040 B keyword ok
$2000 Deferred command $0020 E keyword ok
$1000 File name optional $0010 L keyword ok
$0800 Create file $0008 @ keyword ok
$0400 T keyword ok $0004 S orD ok
$0200 Path 2 expected $0002 F keyword ok
$0100 Path 1 expected $0001 R keyword ok

ponel 5 Also See Pages 8-2 to 8-6

MLI CALLS

JSR $BF0@0
DFB function_code
DW addr_of_ parms
On return carry flag set if
error and A reg has return code.
Also See Page 6-12

"///é//*

ADDRESS OF
HANDLER

*2/+3

4y 03
UNIT BITS:
o UNIT NUMBER DSSS 0000
2143 ADDRESS OF
DATA BUFFER
415 BLOCK NUMBER

NO PARAMETER LIST

1 PRIORITY

0 S04
+1 RESERVED

+2/+3 RESERVED
+4 RESERVED

+5/+6 RESERVED

0 $03
UNIT BITS:
DSSS0000
o1 UNIT NUMBER
213 ADDRESS OF
DATA BUFFER
“ar+5 BLOCK NUMBER

* Shaded fields are outputs only or
do not need initialization.

panel 6

0 $07
ADDRESS OF
el PATHNAME
ACCESS
3 BITS
FILE
4 TYPE
AUXILIARY
+5/+6 FILE TYPE
. STORAGE
TYPE
CREATION
+8/+9 DATE
CREATION
“Al*B TIME

ACCESS: DNBOOOWR
FILE TYPE: (see next panel)
AUX_TYPE: TXT=Rec Len

BIN, BAS, VAR = Address
STORAGE TYPE:

$01—Seedling

$02—Sapling

$03—Tree

$0D—Directory
DATE: YYYYYYYM MMMDDDDD
TIME: 000HHHHH 0OMMMMMM
PATHNAME Buffer must start with
one byte length followed by name
(MSB off)

Also See Pages 6-15 to 6-25

ADDRESS OF
PATHNAME

ADDRESS OF
PATHNAME

Y7
o

0 $02
12 oLD PATNANE
3004 ADDRESS OF
NEW PATHNAME
8149 //?/é//
Lt %‘//3/
.3 ACCESS %
BITS +10/+11 /%Ay/
- Tiee GET_FILE_INFO on Vol Dir returns
blocks on Volume in AUX_TYPE,
56 AUXILIARY blocks in use by all files in blocks
FILE TYPE Used.
+7
+8/+9 -0 02 UNIT BITS:
DSSS 0000
“AIB ::GTDEIF?(F)ALYAISL -1 UNIT NUMBER 000(;):)000
cie0 MODCATION 2 oxTABurrEn
Also See Pages 6-26 to 6-38
FILE TYPES:
$00 TYPELESS $1B ASP $FD VAR
$01 BAD $EF PAS $FE REL
$04 TXT $FO Added Command $FF SYS
$06 BIN $F1-$F8 User Defined
$OF DIR $FA Integer BASIC pgm All others are
$19 ADB $FB Integer BASIC vars SOS only or are
$1A AWP $FC BAS reserved.

panel 7

Also See Pages 4-10 to 4-30

$01

142

ADDRESS OF
PATHNAME

+2/+3

*1/+2

ADDRESS OF
PATHNAME

+4/+5

+6/+7

REFERENCE
NUMBER

ADDRESS OF
DATA BUFFER

REQUESTED
LENGTH

i

w0 s
e ADDRESS OF
PATHNAME
R
e ADDRESS OF
34 FILE BUFFER

REFERENCE
NUMBER

| e
$00 DISABLE
N0 $FF MATCH
2 MASK $7F IGNORE
MSB
3 CHARACTER

$01

REFERENCE
NUMBER

+2/+3/+4

REFERENCE
NUMBER

NEW FILE POSITION %
M N

+0 $04
" REFERENCE
NUMBER
oY ADDRESS OF
23 DATA BUFFER
+4/e5 REQUESTED
LENGTH

panel 8

0 02
" REFERENCE
NUMBER
+2/+3/+4

/%M

Also See Pages 6-39 to 6-54

REFERENCE
NUMBER

NEW EOF

w2304 POSITION

R

*21+3

+0 $02

REFERENCE
NUMBER

NEW ADDRESS OF
FILE BUFFER

REFERENCE
NUMBER

LR

+2/+3/+4

*2/+3

REFERENCE
NUMBER

Wil

MLI ERROR CODES

$00
$01
$04
$25
$27
$28
$28
$2E
$40
$42
$43
$44
$45
$46
$47

No error

Invalid MLI function
Invalid parameter count
Interrupt table full

I/0 error

No device connected
Write protected

Volume switched

Invalid pathname syntax
Too many files open
Invalid REF NUM
Nonexistent path
Volume not mounted
File not found
Duplicate file name

panel 9

$48
$49
$4A
$4B
$4C
$4D
$4E
$50
$51
$52
$53
$55
$56
$57
$5A

Disk full

Vol DIR full

Incompatible ProDOS version
Unsupported storage type
End of file

Position past EOF

Access error

File already open

File count bad

Not a ProDOS disk

Bad parameter

VCB overflow

Bad buffer addr.
Duplicate volume

Bad vol. bit map

Also See Pages 6-54 to 6-61

